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A Reference-Optimizing Antiwindup Control

for Input-Constrained Systems

Razak Olusegun Alli-Oke1

Abstract— Control limits due to saturation constraints may
result in the directionality problem in addition to the controller
windup effect. In solving the directionality problem, this paper
explores the concept of modifying the reference signal to be an
element of the maximal output admissible set of the closed-
loop dynamics. This is achieved by an online constrained
optimization of a tracking-related cost function associated
with the closed-loop system. The design procedure for this
reference-optimizing directional compensator is applicable to
most existing antiwindup schemes. The effectiveness of the
proposed control structure is demonstrated via simulation of
benchmark case study examples.

I. INTRODUCTION

All practical systems are inherently non-linear. Most

commonly, the nonlinearities are as a result of saturation

constraints and switching modes. This due to the fact that

many industrial applications and processes are subject to

hard physical constraints on their inputs. Examples include

constraints on valve openings (0%-100%), limited speed of

motors, and safety limits. These input constraints cause a

mismatch between the controller output and the plant input

which makes the feedback loop to run as open-loop. This

mismatch leads to accumulation of a significant error that

would then require errors of opposite sign for a long period

before the feedback closed-loop is active and the controller

action returns to normal. This undesired phenomenon, called

the ”windup effect”, results in large transients, oscillating or

unstable behaviour of the system.

In [2], a formal definition of anti-windup problem was

given. An important aspect of this definition was that the

recovery of linear performance (a concept also discussed

in [3]) was stated in terms of non-linear L2 gains involving

the unconstrained and actual response of the system [5].

Various anti-windup schemes (e.g. reset anti-windup, [4], [5])

can be considered as particular special cases of the unified

coprime-factor framework put forward by Kothare et al [6].

The a posteriori design strategy of anti-windup control is a

two-step approach in which a linear control design satisfying

all nominal performance specifications is performed first,

then an additional anti-windup compensator to the linear

controller is designed to minimize the undesirable effects

of windup which can occur during saturation [1].

In multivariable systems, due to directional change in

the computed control vector, input-constrained systems may

exhibit directionality issues in addition to standard “windup

effects” [7]. The directionality problem is a performance

1 The author is with the Department of Electrical and Electronic En-
gineering, Elizade University, Ilara-Mokin, Ondo State, Nigeria. Email:
razak.alli-oke@elizadeuniversity.edu.ng

degradation effect that is associated with input-constrained

systems. The directional change in control signal leads to

degradation of output performance. A more precise definition

of directionality is given in [8] as:

“A process exhibits directionality when the

saturated controller output v(t) yields a process

response that is not the ’closest’ (in the process

output space) to the process response of uncon-

strained controller output u(t)”

A common strategy to address the directionality problem

in multivariable input-constrained systems is to insert an

artificial nonlinearity (AN) before the saturation. As noted in

[9], [10], direction preservation of the controller output u(t)
by scaling with factor σ (see σ below) is not necessarily

optimal. Furthermore, the optimal active set of constraints

might not necessarily preserve the direction of the controller

output u(t). The use of optimal directionality compensators

have been reported to compensate for directionality by

solving constrained optimization problems. In [8], [11], the

objective cost is ‖(yc−y)TQTQ (yc−y)‖ where yc, y,Q are

the output response to the constrained plant input, the output

response to the unconstrained plant input and a weighting

matrix respectively.

The bottom line of the ideas in [8], [9], [11] involve

defining the AN as a quadratic optimization

v∗ = arg min
v

‖T v −Fu‖2QTQ : vmin ≤ v ≤ vmax (1)

so that the saturation nonlinearity is never active,

• Clipping: T = In, F = In
• Soroush et al [8]: T = F = PC
• Direction Preservation [9]:

{

T = In, F = In if vmin ≤ ui ≤ vmax

T = In, F = σIn if otherwise

• Heath et al [11]: T = F = Kp

where σ = min
i

| sat(ui)
ui

|, sat(·) = min (vmax ,max(vmin, ·))

P is a diagonal matrix whose diagonal elements depend on

the relative orders of the controlled outputs, Kp is the steady-

state gain, and C is the characteristics matrix of the plant that

defines the plant’s behaviour over a short time horizon.

Another approach is to modify the reference signal in such

a way that the closed loop system does not violate the plant

input constraints [12]–[14]. In the reference optimization

approach presented in [15], the effect of the directional

change in control on the process output can be interpreted as

the performance degradation of the output when the modified

set-point is used instead of the original set-point. In other
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words, as shown in [15], the directional change in the set-

point is an indication of the output performance degradation.

In this paper, the control design of reference-optimizing

directionality compensators in the framework of internal

model control (IMC) is considered. The design procedure

is formulated as a constrained optimization problem whose

solution is a realizable reference trajectory. Section III

presents an overview of the realizable reference optimization

problem and discusses how it differs from the concept

of achievable steady-state optimization. In Section IV, the

modified IMC anti-windup (MIA) framework of [4] is used

to develop the theoretic framework of realizable references,

while Section V illustrates the performance of the proposed

control structure through three benchmark examples. Finally,

the conclusions are summarized in Section VI of the paper.

II. NOTATION

Let U(= Rn) be the space of all control signals and

Du be the domain of all admissible control signals. Thus,

any calculated control signal u(t) ∈ U is mapped to Du by

the input constraints of the plant G(s). Let T (s) denote

the combined closed-loop dynamics of the plant and a

stabilizing controller. Define the maximal output admissible

set O∞ [16] of T (s) as the set of all initial states x0 and

reference inputs r̄ such that, if the constant input r̄ is applied

to the system, the response y satisfies the output constraints,

O∞ = {
(

x0, r̄
)

: y
(

x0, r̄
)

∈ Y ⊂ Rn, ∀t ≥ 0} .

Typically, by an appropriate choice of matrices C and D and

a set Y , all constraints such as plant input constraints may

be summarized by a single set inclusion [17],

Cx(t) +Du(t) ∈ Y. (2)

Subsequently, for brevity sake, signal dependence on t is

omitted but implied.

III. REALIZABLE REFERENCE OPTIMIZATION

The use of set-point filters to modify the reference signal

so as to meet some system performance criteria had been

introduced in the context of two degree-of-freedom (DOF)

control structures [18]–[20], and set-point trajectories in the

context of model predictive control (MPC) [21]. This section

expatiates on the concept of solving an optimization problem

to compute a modified reference signal as introduced by [22]

in the context of anti-windup [15], [23], [24].

When u /∈ Du, there is an inconsistency between the

controller output u and the plant input v, that is, u 6= v. Then

the optimal solution to the directionality problem reduces

to finding the active set of constraints that yield a process

response that is close in some sense to the process response

of unconstrained controller output.

The basic idea of realizable reference optimization is

to modify the set-point r with the aim of restoring the

consistency between controller output and the plant input.

The modified set-point, called realizable reference rr, is

such that if the realizable reference rr had been applied

to the system in Figure 2, then the saturation nonlinearity

would not be active. Here, the objective cost is chosen

as 1
2‖(r

r−r)‖2
QTQ

where rr, r,Q are the realizable reference,

actual reference and a weighting matrix respectively. The

matrix Q is chosen such that the elements of matrix Q and

QTQ have the same sign as that of the steady-state matrix.

Remark 1. In the context of secondary-level control, the

achievable steady-state optimization recently reported by

the authors of [25], [30] seeks an optimal steady-state

reference r∗ss that should be applied in Figure 2 instead

of the actual reference r such that the steady-state output

response yss is as close as possible to r subject to only the

plant input satisfying v ∈ Du . That is,

r∗ss = arg min
yss

‖yss − r‖2QTQ (3)

subject to steady-state input (vss) constraints of the plant.

In contrast, it is noted that the realizable reference opti-

mization seeks an optimal feasible reference r∗r such that r∗r
is close in some sense to r subject to the control signals sat-

isfying v = ur ∈ Du. Consequently, the realizable reference

optimization concept is clearly distinct and independent from

the achievable steady-state optimization concept.

The achievable steady-state optimization concept is more

relevant in hierarchical supervisory control [26], [27]. The

achievable steady-state targets r∗ss do not coincide with the

actual reference r if and only if the actual reference is such

that {x0, r} /∈ O∞ in steady-state. In these situations, one

has to make structural changes to the plant input constraints

for the control problem to be well-posed [10].

In the next Section, the modified IMC anti-windup (MIA)

framework of [4] is used to develop a proposed direction-

ality compensator using the theoretic framework of optimal

realizable references.

IV. PROPOSED CONTROL STRUCTURE

A. Internal Model Control (IMC)

The standard internal model control (IMC) is a model-

based linear controller design structure introduced by [28] as

shown in Figure 1 where Q(s), G(s) and G̃(s) denote the

IMC controller, the plant and the plant model respectively.

r✲

✻
-

Q(s)✲❥ u

✲

✲G(s)

G̃(s)

y
d

-

✲

❥❄✲

❢❄ ✲

Fig. 1. Internal Model Control (IMC)

With the assumption of perfect model i.e. G(s) = G̃(s),
the stability of G(s) and Q(s) guarantees nominal stability

of the unsaturated closed loop system [28] which makes

the IMC structure attractive for anti-windup designs. The
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modified IMC structure [4] in Figure 2 was presented as an

anti-windup scheme to deal with undesirable effects associ-

ated with the standard IMC structure in event of a saturation.

r✲ ✲ ❤ ✲

✲✛

✲
✻✻

-

Qb(s)

Qf (s) G(s)

G̃(s)

-
❤ u v✲e

-

✲

❤❄✲

❡❄ ✲
d

y

Fig. 2. Modified IMC Antiwindup (MIA)

Here, the IMC controller Q(s) is factorized as:

Q(s) = (I +Qb(s))
−1Qf (s), (4)

where Q(s) is assumed bi-proper minimum-phase stable

and therefore Qf (s) is minimum-phase stable to guarantee

internal stability of the closed-loop system. Consequently,

Qb(s) is strictly proper and ensures that Figure 2 is

free of algebraic loops. The choice of [Qf (s), Qb(s)] as

[Q(s), 0] corresponds to standard IMC: min
v

|u− v|1) while

[Q(∞), Q(∞)Q(s)−1− I] corresponds to Hanus’ condition-

ing technique: min
v

|Qf (e− e′)|1, where e′ = Q−1 ∗ v.

Suppose the plant model G̃(s) can be factorized as

G̃+(s)G̃−(s) where G̃+(s) contain time delays and unstable

zeros of G̃(s) while G̃−(s) has a realizable stable inverse,

see [29, §12.2.2]. In addition, it is required that G̃+(0) = 1.

A suitable choice of Qf (s) and Qb(s) [4] is

Qf (s) = FA(s)G̃(s)Q(s) (5)

Qb(s) = FA(s)G̃(s)− I (6)

where the non-causal diagonal filter FA(s) is chosen such

that lim
s→∞

[FA(s)G̃(s)] = I . The IMC controller is given by,

Q(s) = G̃−(s)
−1F (s) (7)

where the IMC filter F (s) is

F (s) = diag

(

1

(λis+ 1)p

)

, i = 1 · · ·n (8)

and p is is selected such that Q(s) is biproper. The speed

of response can be improved by choosing the parameter λi

so as to minimize some weighted sensitivity functions. In

addition, the adjustable parameter λi provides the tradeoff

between performance and robustness to model inaccuracies.

B. Reference-Optimizing IMC Antiwindup Control

The proposed control structure incorporates the reference

optimization concept discussed in § III into the modified IMC

anti-windup of Figure 2. Assume no plant-model mismatch

in Figure 2, i.e. G(s) = G̃(s), then the plant input v is related

to the actual controller-output u by:

u =
[

Cf −Cb

]

[

x
q

]

+
[

Df −Db

]

[

(r − d)
v

]

, (9)

where Cf , Df , x and Cb, Db, q are the state-space matrices

and states of Qf (s) and Qb(s) respectively. For the same

states [x, q], the realizable reference concept assumes that

there exists a realizable reference rr such that there is

consistency between the realizable controller-output ur and

the plant input v (i.e. v = ur). Therefore, from Figure 2,

ur =
[

Cf −Cb

]

[

x
q

]

+
[

Df −Db

]

[

(rr − d)
v

]

. (10)

It then follows from (9) and (10) that,

ur = Df (rr − r) + u. (11)

Now, the controller’s state equation evolves with {rr, xr, qr},

and the controller output originally given by (9) is redefined

to also evolve with rr as follows.

u =
[

Cf −Cb

]

[

xr

qr

]

+
[

Df −Db

]

[

(rr − d)
v

]

. (12)

Hence, the controller dynamics remains the same but with

an input rr satisfying (11) as shown in Figure 3.

r∗r✲ ✲ ✲

✲✛

✲
✻

-

Qb(s)

G(s)

G̃(s)

❣ u v✲ ❣+✲✲r

✻

QP

✲

❄

Df

❣
✻

-

r∗r − r

ur

❣❄✲

✲y✲ ❞❄
d

-

Qf (s)

Fig. 3. Reference-Optimizing IMC Antiwindup, v = ur .

The minimization of the cost function 1
2‖(rr − r)‖2

QTQ
can

then be expressed as a quadratic programming (QP):

r∗r = arg min
rr

1

2
rTr Q

TQ rr + fT rr : vmin ≤ ur ≤ vmax

(13)

where f = −QTQr and ur is as given by (11). The

optimization problem (13) aims to make rr as close as

possible to r while not violating the plant input constraints.

Here, the weighting matrix Q is chosen as the steady-state

gain of the plant i.e. Q = G(0), see § III. This choice allows

the optimization to take into account the plant’s steady-

state characteristics while computing the optimal realizable

reference r∗r . The optimal controller output u∗
r that ensures

consistency (v = ur) can then be obtained from (11) as

u∗
r = Df (r

∗
r − r) + u. (14)

Remark 2. It is noted that, unlike [23], the controller output

equation (12) also evolves with rr in the above formulation.

Consequently a key advantage of this formulation is that the

designed directional compensator can easily be plugged into

an existing controller with little or no modification to that

existing controller.
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V. CASE STUDY EXAMPLES

In this section, the performance of the proposed reference-

optimizing IMC antiwindup control (see Figure 3) is demon-

strated via simulation of three benchmark examples. Its’

performance is compared with those of the directionality

compensators of [8] and [30] as listed below,

• MIA [4]

• TMIA [25], [30] with Q = In
1

• Souroush et al [8] with Q = Kp = G(0)
• Proposed Compensator, with Q = Kp = G(0) .

The quadprog solver in MATLAB-SIMULINK was used to

solve the quadratic programming (QP).

Example 1 [4]. Consider the following plant,

G(s) =
10

100s+ 1

[

4 −5
−3 4

]

(15)

with |ui| ≤ 1, i = 1, 2 and a set-point change of

[0.63, 0.79]T . The standard IMC controller for a step input

is designed as,

Q(s) =
100s+ 1

10(20s+ 1)

[

4 5
3 4

]

. (16)

Following the development in § IV.A, the factorization of the

IMC controller Q(s) is obtained using (5) and (6), where

G̃(s) =
10

100s+ 1

[

4 −5
0.1s+1

−3
0.1s+1 4

]

; FA(s) = 2.5(s+ 1)I

The structural matrices are obtained as Kp =

[

40 −50
−30 40

]

,

C =

[

0.4 −0.5
−0.3 0.4

]

and Qf (∞) =

[

2 2.5
1.5 2

]

.
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(a) Output Response y1.
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(b) Output Response y2.

Fig. 4. Output Responses of Example 1.

In this example, it can be observed from Figure 4 that the

proposed compensator eliminates the overshoot inherent in

the other directional compensators for both outputs y1 and

y2. The plots in Figure 5 show the realizable reference signals

computed by the proposed compensator.

1This yields same response as the “Souroush et al [8] with Q = In”
since the achievable steady-state is equivalent to the actual reference for
well-posed control problems (see Remark 1).
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(a) Reference Signals r1r , r1.
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(b) Reference Signals r2r , r2.

Fig. 5. Actual and Realizable Reference Signals of Example 1.

Example 2 [8]. Consider the plant, G(s), given by

1

s2 + 0.04s+ 0.0002

[

0.25(s+ 0.03) −0.0008
−0.125 4(s+ 0.01)

]

with |ui| ≤ 0.12, i = 1, 2 and set-point change of [0.8, 2.2]T .

The standard IMC controller for a step input is designed as,

Q(s) =







4s+ 0.04

5s+ 1

0.0008

2s+ 1
0.125

5s+ 1

0.25s+ 0.0075

2s+ 1






. (17)

Following the development in § IV.A, the factorization of the

IMC controller Q(s) is obtained using (5) and (6), where

FA(s) =

[

4(s+ 1) 0
0 0.25(s+ 1)

]

; G̃(s) = G(s) . (18)

The structural matrices are obtained as Kp =

[

37.5 −4
−625 200

]

,

C =

[

0.25 0
0 4

]

and Qf (∞) =

[

0.8 0
0 0.125

]

.
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(a) Output Response y1.
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(b) Output Response y2.

Fig. 6. Output Responses of Example 2.

In this example, it is observed from Figure 6 that all the

responses are identical to the MIA response for output y1.

However, the performance of the proposed compensator

performs slightly better than the “Souroush et al [8] with

Q = G(0)” for output y2.

Example 3 [31]. The non-minimum phase plant in [31] is

modified as a minimum-phase plant having complex poles

and complex zeros. The modified plant, G(s), is given by

G(s) =







1.5

63s+ 1

1

2s2 + s+ 1
1

5096s2 + 147s+ 1

1.6

91s+ 1






(19)
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with |ui| ≤ 7, i = 1, 2 and set-point change of [0.8, 2.2]T .

The standard IMC controller for a step input is designed as,

G̃(s) = G(s) ; Q(s) = G̃−(s)
−1







1

54s+ 1
0

0
1

36s+ 1






.

Following the development in § IV.A, the factorization of the

IMC controller Q(s) is obtained using (5) and (6), where

FA(s) =

[

(63/1.5)s+ 1 0
0 (91/1.6)s+ 1

]

. (20)

The structural matrices are obtained as Kp =

[

1.5 1
1 1.6

]

,

C =

[

0.0238 0
0 0.0176

]

and Qf (∞) =

[

0.7778 0
0 1.5799

]

.
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(a) Output Response y1.
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(b) Output Response y2.

Fig. 7. Output Responses of Example 3.

In this example, it can be observed from Figure 7 that both

the proposed compensator and “Souroush et al [8] with

Q = G(0)” yield similar responses in output y1 and y2.

Furthermore, in output y1, the proposed compensator elimi-

nates the overshoot in the MIA and TMIA responses.

VI. CONCLUSION

A formulation of the reference-optimization concept has

been presented. The computed realizable reference signals

result in reference inputs that are elements of the maximal

output admissible set of the plant. It has been demonstrated

that the proposed control structure is effective in dealing with

the directionality issues and the control windup encountered

in constrained systems. A key advantage of this formulation

is that the designed directional compensator can easily be

plugged into an existing controller with little or no modifi-

cation to that existing controller.
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