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ABSTRACT

This study deals with ANN (artificial neural network) modeling of a swirl burner. The model was used to
predict the flame temperature and pollutant emissions (CO (carbon monoxide) and NOy (nitrogen oxide))
from combustion of LPG (liquefied petroleum gas) in the swirl burner. The data for the training and
testing of the proposed ANN was obtained by combusting LPG at various equivalent ratios (LPG/air ratios)
and swirler’s vane angles in a low swirl burner. Vane angles of 35—60° in steps of 5° and equivalent ratios
of 0.94, 0.90, 0.85, 0.80, 0.75, 0.71, 0.66 and 0.61 were considered. An ANN model based on standard
back-propagation algorithms for the swirl burner was developed using some of the experimental data for
training and validation. The performance of the ANN was tested by comparing the predicted outputs
with the experimental values that were not used in training the network. R values of 0.94 were obtained
for CO and NOy and 0.99 for flame temperature. These results show that very strong correlation exists
between the ANN predicted values and the experimental results. Therefore, this study demonstrates that

Flame temperature

the performance and emissions of swirl burner can be accurately predicted using ANN approach.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Preference for LPG (liquefied petroleum gas) in domestic and
industrial heating appliances is predicated on its comparatively
clean combustion product as it does not produce visible emissions
[1]. However, it produces gaseous pollutants such as NOy (nitrogen
oxides) and CO (carbon monoxide) when its combustion devices
are not efficient. The negative impact of these pollutants on the
environment is of global concern [2], hence, various combustion
and post combustion techniques [3] are being employed by com-
bustion engineers to reduce these harmful emissions to acceptable
levels [4].

Efficient combustion of LPG requires the use of appropriate
equipment to produce turbulent mixing of atomized fuel and
oxidant for achieving high efficiency in combustors [5]. This proper
mixing of the constituents provided by high aerodynamic flow
gives good combustion and produces lower pollutant emission. It
also generates high temperature for total release of the fuels net
calorific value [6]. Inefficient combustion leading to high emission
of pollutants in the flue gas results where this turbulence and
proper mixing could not be achieved due to design shortcomings.
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Hence, the injection of fuel and oxidant through swirler is used to
impart turbulence on the charge with a view to achieving high
combustion efficiency [7,8].

Knowing the performance of a burner for different range of
operating conditions is usually desired by manufacturers and
combustion engineers. This requirement is either met by con-
ducting a comprehensive experimental study or by modeling the
burner operation [9]. Testing the burner under all possible oper-
ating conditions and fuel cases is practically impossible as it is both
time consuming and expensive. Also, developing an accurate model
for the operation and combustion dynamics in a burner system is
difficult due to the complex processes involved [10]. As an alter-
native, the performance and exhaust emissions of a swirl burner
can be modeled using ANN (artificial neural network). This
modeling technique can be applied to estimate desired output
parameters when enough experimental data is provided.

ANN can be used to model physical phenomena with simple
mathematical representations. Prediction of ANN is achieved from
training on experimental data which can be validated by inde-
pendent data sets [11]. Selection of an appropriate neural network
topology is therefore very important in terms of model accuracy
and model simplicity.

Various researchers have shown ANN as a powerful modeling
tool for predicting complex relationships. The ANNs approach has
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been applied to predict the performance of various thermal and
energy systems. Investigation of the performance of solar air col-
lectors [12] and prediction of the bottom ash formed in a coal-fired
power plant [13] were done using artificial neural network. ANN
modeling was also applied in assessing [14]| and in estimating the
performance [15] of ground coupled heat pump systems used for
cooling and heating purposes. Ref. [16] employed artificial neural
networks for analyzing energy and predicting greenhouse basil
production. ANN has also been found efficient in estimating the
maximum power [17] and the annual energy produced [18] by a
photovoltaic generator.

The performance and exhaust emissions in spark ignition en-
gine using ethanol-gasoline blends were done by Ghobadian [19]
using ANN prediction. It was concluded that ANN provided the
best accuracy in modeling the performance and emission indices.
Ref. [20] utilized ANNs to predict specific fuel consumption and
exhaust temperature for a diesel engine. Likewise Ref. [21], used
ANN to predict the performance and exhaust emissions of a gaso-
line engine. Ref. [22] also analyzed the effect of octane number on
exhaust emissions from engine using artificial neural network.
They all concluded engine performance, exhaust emissions and
exhaust gas temperature can be predicted by ANN model quite
well.

In this study, the use of ANN has been proposed to determine CO
emission, NOy emission and flame temperature obtained from the
combustion of LPG at different fuel equivalence ratio and swirlers
vane angles using results from experimental analysis.

2. Experimentation
2.1. Description of the experimental setup

The sectional view of the swirl burner experimental rig is shown
in Fig. 1. The set-up consists of a swirl burner, air compressor, gas
cylinder, fuel and air flow lines, rotameters, combustion exhaust
chamber, temperature measuring devices, gas analyzer and digital
camera. Omega rotameters calibrated in liter per minutes were
used to independently measure the air and LPG flow rates into the
swirl burner’s pre-mix duct. The swirl burner was specifically
designed to properly mix the gaseous fuel with the compressed air
coming from a compressor (2.5 hp, 1500 W, 8 atm, 2800 rpm, POMA
Air Compressor, ISO 9001:2000). The temperature distributions at
the outlet of the swirl burner were measured using type K, mineral
insulated grounded junction, 1.6 mm diameter thermocouple. The
thermocouple which is capable of reading temperature of up to
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1200 °C was connected to a digital read-out device. Gas sampling
probe was inserted into the exhaust chamber and the composition
of the exhaust gas was determined by using a gas analyzer (Eclipse
EGA4 Combustion analyzer). The analyzer is capable of measuring
oxides of nitrogen (NOyx) and carbon monoxides (CO).

2.2. Testing procedure

Tests on the swirl burner were carried out using six swirlers
with different vane angles. Experiments were carried out using LPG
which has composition of 75% butane and 25% propane as a fuel
and air as a charge. Air and fuel were supplied into the pre-mixed
duct of the swirl burner through the flow lines. Quantities of fuel
and compressed air required to achieve desired equivalence ratios
for combustion were measured using rotameters. Variations of the
equivalence ratio were obtained by changing fuel flow rate while
maintaining constant air flow rate. Each swirler was placed inside
the swirl burner to impact a swirling flow onto the various air/fuel
mixture for efficient combustion. Data on pollutant emissions and
flame temperature were collected for vane angles from 35 to 60° in
steps of 5° and equivalence ratios from 0.65 to 1.0 in steps of 0.5.

3. Experimental results
3.1. NOy and CO emissions

Fig. 2 represents a variation of NOy emissions from the com-
bustion of LPG in the swirl burner with equivalence ratio at
different vane angles. NO, emissions lower than 5 ppm were ob-
tained for the range of operating equivalence ratios
(0.61 < g < 0.95). The minimum NOy emission of 0.33 ppm was
obtained at swirler’s vane angle of 55°. It represents a total NOy
reduction of 93.4% at equivalence ratio of 0.90.

Fig. 3 presents the profile of carbon monoxide emissions with
equivalence ratio for all vane angles. CO emissions of less than
300 ppm were obtained for the range of operating equivalent ratios
considered. Performance testing of vane swirlers revealed that CO
emission level was drastically reduced to 45 ppm at equivalence
ratio of 0.66 for swirler with vane angle of 55°. This value repre-
sents a reduction of 85% in total CO emission. However, at equiva-
lence ratio of 0.90, CO emission was higher for swirler with vane
angles of 35°, 45° and 50°, indicating inefficient combustion. This
resulted from poor mixing of combustion reactants in comparison
with vane angle of 55° and 60° at the same equivalence ratio.
Reduction of 55.3% and 82.1% in carbon monoxide (CO) emissions

air/fuel
A
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Fig. 1. Sectional view of the swirl burner experimental rig.
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Fig. 2. Variation of NO, emissions with equivalence ratio for various vane angles.

for swirler with vane angle of 60° and 55° respectively was
observed at 0.90 equivalent ratio. From these results, it was
observed that NO, and CO emissions were strongly influenced by
equivalence ratio and swirl intensity imparted by the swirler.

3.2. Flame temperature

Fig. 4 presents temperature profiles of the produced flame in the
swirl burner. The trend here is similar to the trend exhibited in the
plot of adiabatic flame temperature versus equivalence ratio for a
methane—air mixture [23]. Increment in flame temperature with
equivalence ratio towards fuel-rich side was noticed. Generally, for
all swirlers, flame temperature reaches its peak value at an equiv-
alence ratio where there is a good mixing and efficient combustion
of fuel in the combustor. The maximum flame temperature (Tf) of
1096 °C obtained was at swirler vane angle of 45° and equivalence
ratio of 0.71. However, operating equivalence ratio of 0.90 and
swirler’s vane angle of 55° were selected as optimum. The selected
optimum condition produced NOy of 0.33 and CO of 53.7 ppm with
flame temperature of 1012 °C.
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Fig. 3. Variation of CO emission with equivalence ratio for various vane angles.

4. Artificial neural networks

ANN’s ability to acquire, store and utilize knowledge, likened to
human information processing systems relies on its massively
interconnected neurons. It can accurately predict outputs of a set of
inputs by learning the pattern of experimental data and as such
adjust itself [24]. Its application in modeling of systems where
complex interaction exists among the input parameters is informed
by this ability. The process of operation involves acceptance of sets
of inputs by each of the neurons and subsequent output of the
correlated response. Choice of appropriate learning method and
training functions is needed in establishing perfect input to output
relationship. The weight and biases attached to the set of inputs are
continuously adjusted until the comparison of the ANN outputs
meets certain criteria.

The performance of the ANN-based predictions is evaluated by
regression analysis of the network outputs (predicted parameters)
and the target outputs (experimental values). The correlation co-
efficient (R) is used to assess the strength of this relationship. The
value of R ranges from —1 to +1 with values closer to +1 indicating
a stronger positive linear relationship.

Errors between the network outputs (y) and the target outputs
(t) are measured by some performance functions used for ANNs
training. Among them are the RMSE (root mean squared error),
MSE (mean squared error) and MRE (mean relative error). They are
calculated as defined in equations (1)—(3) [11,21,25].

MSE — zNj(y-fr)z (1)
N - 1 1

(2)

RMSE = (3)

where N is the number of the data used for validation, t and y are
actual output and predicted output sets, respectively.
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Fig. 4. Variation of flame temperature with equivalence ratio at different vane angles.
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5. Modeling with ANN

An ANN model for the swirl burner was developed using data
gathered from combustion of liquefied petroleum gas in a low swirl
burner. The model was developed to predict the correlation be-
tween NO, emission, CO emission and flame temperature using
different vane angles and equivalent ratios (LPG-air ratio). In
creating the model, 70% of the data set was randomly assigned as
the training and validation set, while the remaining 30% was
employed for testing the network performance.

Schematic representation of the ANN architecture for the swirl
burner is shown in Fig. 5. There were two input and three output
parameters in the experimental tests. The inputs to the ANN are the
vane angles and equivalent ratios, whilst, the outputs are the CO
emission, NOy emission and the flame temperature. Hence, the
input layer consisted of 2 neurons while the output layer had 3
neurons.

The number of hidden layers and the number of neurons in each
of the hidden layers are part of the network features responsible for
its performance. In view of this, various ANN configurations were
trained, evaluated and tested (Table 1). Both feed forward and
cascade forward (written as ff and cf in Table 1) networks were
tested to permit selection of the most appropriate. The network
topography in Table 1 refers to the number of neurons in the input
layer, hidden layer(s) and output layer. Activation functions tan/lin
or log/lin means the tansigmoid or logsigmoid transfer function
was used in the hidden layer(s) while purelin was used in the
output layer. All the ANN models were trained using standard back-
propagation algorithm in which network weights and biases were
initialized randomly at the beginning of the training phase. Mean
squared error (MSE) which is the average squared error between
the network outputs and the targets on the validation set was used
as the stop criteria for model generalization.

A cascade-forward back propagation network was selected as
the optimum network. Cascade forward is similar to feed-forward
networks, but different in terms of the weight connections from
the input to each layer and from each layer to the successive layers.
As depicted in Table 1, the cascade forward networks consistently
gave lower error condition compared to the feed forward networks.
The selection decision was based on simplicity, low error condition
and high coefficient of variation (R).

The network consists of two hidden layers with 12 neurons in
the first and 13 neurons in the second. Hyperbolic tangent sigmoid
(tansig) function was used as the transfer function in the hidden
layers while the output layer was made up of pure linear (purelin)
transfer function. The weight/bias coefficients adjustment and

Vane angle

Equivalent
ratio

Table 1
Summary of various networks evaluated to yield the criteria of network
performance.

Network  Activation  Training  Network Testing error R
function rule topography

ff tan/lin trainlm (2,13,3) 491 0.99045
ff log/lin trainlm  (2,15,3) 229 0.9926
ff tan/lin trainlm (2,15,3) 280 0.99433
ff log/lin trainbr (2,20,3) 6 x 10* 0.99625
ff log/lin trainlm  (2,20,3) 1.56 x 10° 0.99106
ff tan/lin trainbr (2,20,3) 1.19 x 10* 0.99563
ff tan/lin trainlm (2,20,3) 228 0.98572
ff log/lin trainlm  (2,8,8,3) 3.57 x 10° 0.99322
ff tan/lin trainlm (2,10,10,3) 341 0.99693
ff tan/lin trainlm (2,11,11,3) 776 0.98928
cf tan/lin trainlm (2,20,3) 0.000243 0.99372
of tan/lin train/lm  (2,10,12,3) 831 x 10725  0.98604
cf tan/lin trainlm (2,10,15,3) 3.76 x 107" 0.99226
of tan/lin trainlm  (2,12,133) 499 x 10°'"  0.99287
of tan/lin trainlm  (2,12,153) 341 x 107" 0.99662

error minimization process were achieved by using Levenberg-
Marquardt (trainlm) training algorithm and gradient descent with
momentum rule (learngdm) respectively. The back-propagation
and monitoring of the network performance were implemented
under MATLAB 2010a environment.

6. Results and discussion

Based on the result of the ANN modeling, the training algorithm
of back propagation was adequate for predicting CO emission, NOy
emission and flame temperature. The output parameters (pre-
dicted) from the ANN network of the swirl burner as a function of
the experimental ones (target) are as shown in Figs. 6—8. In the
graphs, the accuracy of the ANN predictions was evaluated by their
closeness to the straight dashed line which indicates the perfect
prediction. The high correlation between the ANN predicted values
and the experimental values illustrated in the graphs implies that
the model succeeded in predicting the performance and emissions.

The predicted versus target values for the CO and NO, emissions
are as shown in Figs. 6 and 7. The plots yield a correlation coefficient
(R-values) of 0.94 for both CO and NOy emissions. Fig. 8 shows the
ANN-predicted versus experimental values for the flame temper-
ature with correlation coefficient of 0.99. These values indicate
existence of strong correlation in the modeling of swirl burner
flame temperature and emissions. The created network has also
shown the capability of predicting these parameters separately.

i
IFlame

i
temperature

Hidden Layers

Fig. 5. Schematic representation of the ANN architecture for swirl burner.
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Comparison of the output obtained by simulating the ANN and
the target values for the set of 14 test data are shown in Figs. 9—11.
The closeness of the curves further confirms the capability of ANN
in predicting the CO emission, NOy emission and flame temperature
for swirl burner adequately.

7. Conclusion

An experimental study and artificial neural network modeling of
LPG fueled swirl burner were performed to predict the flame
temperature, NO, and CO emissions of the burner. The swirling
effect produced by swirlers of different vane angles at different
equivalence ratios revealed that NOy and CO emissions and flame
temperature were strongly influenced by equivalence ratio and
swirl intensity imparted by the swirler. The use of swirler with vane
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Fig. 7. ANN predictions versus the experimental values for NO.
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Fig. 8. ANN predictions versus experimental values for flame temperature.

angle of 55° at equivalence ratio of 0.90 allows the burner to
operate at temperature of 1012 °C with minimum pollutant emis-
sions of 0.33 for NOyx and 53.7 ppm for CO.

The performance of the cascade forward back propagation
neural network was evaluated by the correlation coefficient and the
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Fig. 9. Comparisons of experimental results and the ANN predictions for NO, at
various test patterns.
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Fig. 10. Comparisons of experimental results and the ANN predictions for CO at
various test patterns.
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Fig. 11. Comparisons of experimental results and the ANN predictions for flame
temperature at various test patterns.

mean square error (MSE). The very good, R values and very low MSE
obtained showed that the neural network model was capable of
learning the relationships among the input and output variables for
the given data set. Plot and comparison of the ANN-predicted re-
sults and the experimental data showed good correlation. Hence,
ANN proved to be a useful tool that can be employed in correlation
and simulation of combustion parameters.
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