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ABSTRACT
This present study was carried out to investigate the application of artificial neural network (ANN) and
response surfacemethodology (RSM) asmodelling tools for predicting the waste cooking oil methyl esters
(WCOME) yield obtained from alkali-catalysedmethanolysis of waste cooking oil (WCO). The impact of pro-
cess parameters involved was studied by a central composite rotatable design. A comparison of the two
developed models for the methanolysis process was carried out based on pertinent statistical parameters.
The calculated values of coefficient of determination (R2) of 0.9950 and the average absolute deviation
(AAD) of 0.4930 for the ANN model compared with R2 of 0.9843 and AAD of 0.9376 for the RSM model
demonstrated that the ANNmodel was more accurate than the RSMmodel. The actual maximumWCOME
yield of 94wt%was obtained at a reaction temperature of 55°C, a catalyst amount of 1w/v, a reaction time
of 70 min and a methanol-to-oil ratio of 6:1.

Abbreviations/NomenclatureCV: coefficient of variance; FFA: free-fatty acid; R: correlation coefficient; R2:
coefficient of determination
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1. Introduction

One of the major sources of fuel for generating energy in the
world is the fossil fuel, which is the fuel obtained from the
remains of dead animals and organic matter. Environmental
problems associated with the enormous use of energy derived
from fossil fuel have triggered the quest for alternative fuels,
especially renewable energy source. Biodiesel, which is a mix-
ture of fatty acid alkyl esters, is a formof renewable energy that is
basically derived fromdifferentbiological sources suchas animal
fat or vegetable oil (Ramírez-Verduzco, Rodríguez-Rodríguez,
and del Rayo Jaramillo-Jacob 2012; Wang et al. 2012). Biodiesel
possesses numerous advantages: it is biodegradable, non-toxic,
ecofriendly and has low emission profile (McCormick, Ross, and
Graboski 1997; Jeong, Yang, and Park 2009; Wang et al. 2012).
This has made it a good substitute for petrol–diesel fuel.

Biodiesel cannot fully substitute the conventional diesel fuel
because of the high cost of feedstock used in its production
(Knothe 2002). It has been reported that 70–80% of the total
cost of biodiesel production arises from the cost of its feedstock
oil (Wang et al. 2012). To troubleshoot this major challenge, a
low and cheap feedstock such as non-food oil, waste cooking oil
(WCO), animal fat and cheap alcohol such as methanol could be
used for the effective production of biodiesel. WCO is obtained
from fresh cooking oil that has been subjected to one form of
cooking or the other and such that it is no longer suitable to be
used for cookingpurposes. It is of loweconomic value andhence
considered waste.

CONTACT Eriola Betiku ebetiku@oauife.edu.ng

The most cost-effective method of producing biodiesel is via
the transesterification process or alcoholysis reaction. The trans-
esterification process involves a reversible equilibrium reaction
between a mole of triglyceride and three moles of alcohol to
give three moles of fatty acid alkyl esters and a mole of glyc-
erol (Equation (1)). It has been reported that in order to obtain
a high yield of biodiesel, the stoichiometry ratio in the reaction
could be altered by increasing the number of moles of the alco-
hol used (Demirbas 2006;Hameed, Lai, andChin2009). The chain
of reaction in the transesterification reaction involves a step-
by-step conversion of triglyceride molecule into diglycerides,
monoglycerides and glycerol.

(1)

Biodiesel production using WCO as feedstock through the
transesterification process has been reported by several authors
(Patil et al. 2010; Baskar and Soumiya 2016; Bala, Misra, and Chi-
dambaram 2017). While some authors have reported modelling
of the transesterification process involved using the response

© 2018 Informa UK Limited, trading as Taylor & Francis Group
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surface methodology (RSM) (Omar and Amin 2011; Atapour,
Kariminia, and Moslehabadi 2014), only a few reports exist on
the use of artificial neural network (ANN) (Talebian-Kiakalaieh
et al. 2013) or adaptive neuro-fuzzy inference system (ANFIS)
(Mostafaei, Javadikia, and Naderloo 2016) for this purpose. RSM
is a statistical tool used to develop the empirical model. It is
widely used to design an experiment and to perform local opti-
misation (Chen, Chen, and Lin 2005). However, ANN is the soft
computing techniquewhich originated frommathematical neu-
robiology. ANN has been used as a predictive tool in numerous
disciplines due to its capability to use its learning algorithm to
create a relationship between input and output for complex
nonlinear systems (Alavala 2007; Zobel andCook 2011). ANNhas
found awide application in biochemical processes such asmod-
elling of curdlan production from Paenibacillus polymyxa (Rafigh
et al. 2014), extraction of artemisinin from Artemisia annua (Pilk-
ington, Preston, and Gomes 2014), prediction of process param-
eters for reduction of acid value of sunflower oil (Rajendra, Jena,
and Raheman 2009) and palm kernel oil (Betiku et al. 2016). It
has also been applied to themodellingof transesterificationpro-
cesses used for biodiesel production with great success (Betiku
and Ajala 2014; Avramović et al. 2015; Sarve, Sonawane, and
Varma 2015). Both ANN and RSM have been compared in terms
of their prediction capabilities (Betiku andAjala 2014; Avramović
et al. 2015; Sarve, Sonawane, and Varma 2015; Betiku et al. 2016).
However, it has been reported that ANN outperformed the RSM
in prediction effectiveness (Betiku and Ajala 2014; Avramović
et al. 2015; Sarve, Sonawane, and Varma 2015; Betiku et al. 2016).

This present study developed and compared RSM and ANN
models that were used to predict waste cooking oil methyl
esters (WCOME) yield obtained from the alcoholysis reaction
of WCO with methanol in the presence of NaOH as catalyst.
The parameters studied using design of experiments (DoE)
by RSM were reaction temperature (°C), methanol-to-oil ratio,
reaction time (min) and catalyst amount (w/v). The interaction
between these parameters was investigated by using the sur-
face plots of RSM. The developed models by RSM and ANN
were appraised using statistical parameters such as correla-
tion coefficient (R), coefficient of determination (R2), AAD, mean
average error (MAE), standard error of prediction (SEP), root-
mean-square error (RMSE). The ASTMD6751 and EN 14241 stan-
dard specifications were used to determine the quality of the
biodiesel produced.

2. Experimental

2.1. Materials

TheWCOused for this studywasobtained froma fast food indus-
try in Ilesa, Osun State, Nigeria. All the chemicals and reagents
(sulphuric acid, potassium iodide, calcium chloride, diethyl
ether, ethanolic sodiumhydroxide, ethanol (95%),methanol and
sodium sulphate) used in this study were of analytical grades.

2.2. Methods

2.2.1. DoE and RSMmodelling forWCOME production
The central composite rotatable design (CCRD) of RSMwas used
to model the production of WCOME. A five-level–four-factor

Table 1. Factors and their levels for CCRD.

Coded factors level

Variable Unit −2 (-α) −1 0 +1 +2 (+α)

Temperature (X1) °C 40 45 50 55 60
Catalyst amount (X2) w/v 0.9 1.0 1.1 1.2 1.3
Time (X3) min 40 50 60 70 80
Methanol-to-oil ratio (X4) – 3:1 4:1 5:1 6:1 7:1

design was employed, which produced 30 experimental con-
ditions. The CCRD design includes 16 factorial points, 8 axial
points, and 6 central points to provide information regarding
the interior of the experimental region, making it possible to
evaluate the curvature effect (Jeong, Yang, and Park 2009). The
process parameters and their ranges that were considered for
the transesterification process of WCO were reaction temper-
ature (40–60°C), catalyst amount (0.9–1.3 w/v), reaction time
(40–80 min) and methanol-to-oil ratio (3:1–7:1). Tables 1 and
2 show the coded levels of the independent factors and CCRD
for transesterification step, respectively. To fit the coefficient
of the quadratic polynomial regression model of the response
(dependent variable),multiple regressionswere employed. Both
Analysis of variance and significance test were applied to deter-
mine the quality of the quadratic polynomial response model.
Equation (2) describes the fitted model.

Y = α0 + α1X1 + α2X2 + α3X3 + α4X4 + α12X1X2 + α13X1X3

+ α14X1X4 + α23X2X3 + α24X2X4 + α34X3X4 + α11X
2
1

+ α22X
2
2 + α33X

2
3 + α44X

2
4 , (2)

where Y is the dependent variable (WCOMEyield),α0 is the inter-
cept value, α1, α2, α3 and α4 are the first-order coefficients, α12,
α13, α23 and α34 are the interaction coefficients, α11, α22, α33

and α44 represent the quadratic coefficients and X1, X2 and X3
denote the independent variables.

2.2.2. ANNmodelling of the alkali-catalysedmethanolysis
The ANN tool can serve as an alternative to the polynomial
regression-based modelling tool because it has the ability to
model complex and nonlinear relationships (Maran et al. 2013;
Rafighet al. 2014). Theaccuracyof thismodelling tool is achieved
by including all the experimental data (Nagata and Chu 2003).
The process variables investigated for the ANN model devel-
opedwere reaction temperature, catalyst amount, reaction time
and methanol-to-oil ratio. The ANN model was developed by
using MATLAB (The Mathworks, Inc., Natick, MA, USA, ver. 9.0).
The ANN training was made more efficient by scaling the inputs
and targets data set in the range of −1 to 1. In order to obtain
the desired model, the data set containing the output and the
inputs was split into three subsets, whereby 70%was employed
for training, 15% was used for validation, while the remaining
15% was selected for testing the reliability of the model (Betiku
et al. 2016). A two-layer feed forward network also known as
multi-layered perceptron with the Levenberg–Marquardt back-
propagation algorithm (trainlm) was selected. The choice of the
number of hidden neurons was evaluated by a trial-and-error
procedure. This was done by testing different numbers of neu-
rons until the minimum value of the mean-square error (MSE)
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Table 2. Actual and predicted acid values by RSM and ANN for the transesterification process.

Run X1 (°C) X2 (w/v) X3 (min) X4
Actual WCOME
yield(wt. %)

RSM predicted WCOME
yield(wt. %)

ANN Predicted WCOME
yield(wt. %)

1 40(-2) 1.1(0) 60(0) 5(0) 84.70 84.56 83.74
2 50(0) 1.1(0) 60(0) 5(0) 92.00 91.61 91.75
3 50(0) 1.1(0) 60(0) 5(0) 92.20 91.61 91.75
4 50(0) 1.1(0) 60(0) 5(0) 91.53 91.61 91.75
5 45(−1) 1.2(1) 70(1) 6(1) 88.00 89.10 88.00
6 45(−1) 1.2(1) 50(−1) 6(1) 88.30 89.25 88.29
7 50(0) 1.1(0) 60(0) 7(2) 93.00 92.20 93.16
8 50(0) 1.1(0) 60(0) 5(0) 92.73 91.61 91.75
9 60(2) 1.1(0) 60(0 5(0) 86.76 86.95 86.75
10 50(0) 1.1(0) 80(2) 5(0) 93.00 92.18 92.98
11 45(−1) 1.2(1) 70(1) 4(−1) 88.80 87.41 88.79
12 55(1) 1.2(1) 70(1) 4(−1) 85.62 86.78 85.62
13 50(0) 1.3(2) 60(0) 5(0) 81.00 81.51 81.00
14 45(−1) 1(−1) 50(-1) 6(1) 83.00 81.83 82.99
15 55(1) 1(−1) 70(1) 4(−1) 84.20 83.22 84.19
16 50(0) 1.1(0) 60(0) 5(0) 90.10 91.61 91.75
17 50(0) 1.1(0) 40(-2) 5(0) 79.92 80.78 79.91
18 50(0) 0.9(−2) 60(0) 5(0) 71.00 70.54 70.99
19 45(−1) 1(−1) 70(1) 6(1) 87.30 87.36 88.00
20 45(-1) 1(-1) 50(-1) 4(-1) 66.10 66.63 68.87
21 55(1) 1.2(1) 50(-1) 6(1) 83.15 81.95 82.90
22 50(0) 1.1(0) 60(0) 5(0) 91.10 91.61 91.75
23 50(0) 1.1(0) 60(0) 3(−2) 76.50 77.34 77.39
24 55(1) 1.2(1) 50(-1) 4(−1) 81.00 80.91 79.93
25 55(1) 1(-1) 70(1) 6(1) 94.00 95.01 93.99
26 45(−1) 1.2(1) 50(−1) 4(−1) 87.20 86.17 86.37
27 55(1) 1.2(1) 70(1) 6(1) 87.00 86.44 86.99
28 55(1) 1(−1) 50(-1) 6(1) 83.50 84.86 83.49
29 55(1) 1(−1) 50(-1) 4(−1) 72.80 71.68 72.79
30 45(−1) 1(−1) 70(1) 4(−1) 72.35 73.54 72.35

Note: X1 – temperature, X2 – catalyst amount, X3 – time and X4 – methanol-to-oil ratio.

is identified. Hence, the topology of the network was based on
the number of hidden neurons chosen. In this study, a tangent
sigmoid transfer function (tansig) at the hidden layer and a lin-
ear transfer function (purelin) at the output layer was used for
developing the ANN model. The equations used for developing
the ANNmodel are illustrated in Equations (3)–(5).

X = WhV + bh, (3)

g(t) = tansig(t) = 1 − e−t

1 + e−t , (4)

Y = Woutf (x) + bout, (5)

where X is the hidden layer output, V is the vector of network
input,Wh is the hidden layer weight, bh is the hidden layer bias,
g(t) is the activation function, Y is the network output,Wout is the
output layer weight and bout is the output layer bias.

2.2.3. Statistical analysis of the developedmodels
Statistical parameters such as R, R2, RMSE, MAE, SEP and AAD
were employed assessing the predictive capability of the devel-
oped models. Equations (6)–(11) were employed for the statisti-
cal indices (Table 3). The results obtained were used to compare
the effectiveness and superiority of the two modelling tools.

2.2.4. Alkali-catalysedmethanolysis ofWCO
The alkali-catalysed methanolysis was carried out for WCOME
production due to the low acid value of the WCO (Betiku and
Adepoju 2013). NaOH pellets of known weight were carefully
dissolved in a known volume of methanol. The mixture was

Table 3. Statistical parameters and their relations.

Index name Equation Number

Correlation
coefficient

R =

n∑
i=1

(yp,i − yp,ave).(ya,i − ya,ave)√[
n∑
i=1

(yp,i − yp,ave)2
] [

n∑
i=1

(ya,i − ya,ave)2
] 6

Coefficient of
determination

R2 =

n∑
i=1

(ya,i − yp,i)2

n∑
i=1

(yp,i − ya,ave)2
7

Root mean
square error

RMSE =

√√√√√
n∑
i=1

(ya,i − yp,i)2

n
8

MAE MAE =

n∑
i=1

|(ya,i − yp,i)|
n

9

SEP SEP = RMSE

ya,ave
× 100 10

AAD AAD = 100

n

n∑
i=1

( |ya,i − yp,i|
(ya,i)

)
11

Note: Where n is the number of data sets, ya,i and yp,i are actual and predicted out-
put values of the ith set, respectively, ya,ave is the average actual output values
and yp,ave is the average predicted values.

then transferred into the WCO in the reactor and the reaction
was monitored based on the design variables in Table 2. After
the reaction was completed, the resulting product was trans-
ferred to a separating funnel forWCOME andglycerol separation
under gravity. Glycerol was tapped off and the WCOME left was
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washed with distilled water to remove residual catalyst, glyc-
erol, methanol and soap. The washedWCOME was further dried
over heated CaCl2 powder. The WCOME yield was determined
gravimetrically as described in Equation (12).

WCOME (wt. %) =
weight ofWCOMEproduced

weight ofWCOused
× 100. (12)

2.2.5. Quality characterization ofWCO andWCOME
To evaluate the physical and chemical properties of the WCO
and WCOME, the AOAC methods were used. The properties
determined include acid value, FFA, kinematic viscosity, specific
gravity, peroxide value and iodine value. Cetane number, aniline
point, diesel index andAPIweredeterminedby themethods ear-
lier reported by Haldar, Ghosh, and Nag (2009), while the higher
heating value was determined using the method reported by
Demirbas (1998).

3. Results and discussion

3.1. Quality characterisation ofWCO andWCOME

The physicochemical properties of WCO and WCOME produced
are shown in Table 4. The properties of the WCO showed that
it is a good candidate for the synthesis of biodiesel. Although
the iodine value and cetane number of theWCOwerewithin the
specified limits for biodiesel by ASTM D 6751 and EN 14214, its
kinematic viscosity was too high to be used directly in an inter-
nal combustion engine. The WCO had an acid value of 1.06mg
KOH/g oil, which corresponds to %FFA of 0.53, which suggests
one-step transesterification to convert it into biodiesel. The fuel
properties of WCOME produced are also summarised in Table 4.
Thepropertiesof theWCOMEagreed satisfactorilywithbiodiesel
standard specifications (ASTM D 6751 and EN 14214).

3.2. Processmodelling ofWCOME production by RSM

The results of the methanolysis of the WCO to WCOME are pre-
sented in Table 5. TheWCOMEyield varied from66.10 to94wt.%.

The minimumWCOME yield was obtained at a reaction temper-
ature of 45°C, a catalyst amount of 1 w/v, a reaction time of 50
min and a methanol-to-oil ratio of 4:1. The maximum WCOME
yield was obtained at a reaction temperature of 55°C, a catalyst
amount of 1 w/v, a reaction time of 70 min and a methanol-to-
oil ratio of 6:1. Equation (13) shows the results obtained from the
RSMmodelling when themultiple regression was applied to the
experimental data. The equation describes the actual relation-
ship between the independent variables (process parameters)
and response.

Y(wt.%) = −1197.41 + 10.77X1 + 2.39X2 + 61.31X3 − 5.16X4

+ 0.023X1X2 − 0.10X1X3 − 1.42X1X4 − 30.33X2X3 − 0.03X2X4

− 0.06X3X4 − 0.059X21 − 389.67X22 − 0.013X23 − 1.71X24 ,
(13)

Table 4. Physicochemical properties of WCO and WCOME.

Parameter WCO WCOME ASTM D6751 EN 14214

Physical properties

Physical state at 28oC
Liquid/ dark-

brown
Liquid/ light

brown
Moisture content (%) 0.086 0.012 0.03 max 0.05 max
Specific gravity 0.962 0.852 0.87-0.90 0.85
Kinematic viscosity
(cSt) at 40oC

32.20 5.87 1.9-6.0 3.5-5.0

Chemical properties
%FFA (as oleic acid) 0.53 0.16 –
Acid value (mg
KOH/g oil)

1.06 0.32 0.5 max 0.5 max

Iodine value (g
I2/100 g oil)

67.6 74.67 - 120 max

Saponification value
(mg KOH/g oil)

187.30 58.10 – –

Higher heating value
(MJ/kg)

40.74 45.93 – –

Other fuel properties
Cetane number 60.23 58.64 47min 51min
Flash point (°C) – 176 100 –
Cloud point (°C) – 12 – –
Pour point (°C) – 9 – –

Table 5. Significance tests and ANOVA results.

Source Coefficient estimate Sum of square df Mean square F-value p-value

Model 1505.87 14 107.56 67.49 < 0.0001
Linear
Intercept −1197.41
Temperature (X1) 10.77 8.57 1 8.57 5.38 0.0349
Catalyst amount (X2) 2.39 180.51 1 180.51 113.26 < 0.0001
Time (X3) 61.31 194.83 1 194.83 122.24 < 0.0001
Methanol-to-oil ratio (X4) −5.16 331.38 1 331.38 207.92 < 0.0001
Interaction
X1X2 0.023 106.50 1 106.50 66.82 < 0.0001
X1X3 −0.10 21.44 1 21.44 13.45 0.0023
X1X4 −1.42 4.12 1 4.12 2.59 0.1287
X2X3 −30.33 32.15 1 32.15 20.17 0.0004
X2X4 −0.03 147.14 1 147.14 92.32 < 0.0001
X3X4 −0.06 1.90 1 1.90 1.19 0.2916
Quadratic
X12 −0.059 58.80 1 58.80 36.89 < 0.0001
X22 −389.67 416.48 1 416.48 261.31 < 0.0001
X32 −0.013 45.06 1 45.06 28.27 < 0.0001
X42 −1.71 80.13 1 80.13 50.27 < 0.0001
Residual 23.91 15 1.59
Lack of fit 19.61 10 1.96 2.28 0.1880

R2 = 0.9844;adjusted R2 = 0.9698; predicted R2 = 0.9221; C.V. = 1.49%

Note: df – degree of freedom, C.V. – coefficient of variance.
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where Y denotes the WCOME yield, X1 is the temperature, X2
is the catalyst amount, X3 is the time and X4 is the methanol-
to-oil ratio. Equation (13) shows the terms that have either
positive or negative impact on the WCOME yield. From the
equation, all the linear terms and the interaction between the
temperature and reaction time have a positive influence on
the WCOME yield, while all other terms have a negative influ-
ence on the WCOME yield. The accuracy and the effectiveness
of the model were subjected to ANOVA and the results are
displayed in Table 5. The values of 67.49 and 0.0001 obtained
for F-value and p-value, respectively, indicate that the model
was significant (Stamenković et al. 2013) at the 95% confidence
level (p < .05) (Table 4). All the terms are significant except the

interaction between the temperature and methanol-to-oil ratio
(X1X4) and the interaction between time and the methanol-to-
oil ratio(X3X4). The model accuracy was determined by calculat-
ing the R2 and adjusted R2. The value of 0.9844 obtained from
the model implies that more than 98% of the whole data set
was consistent with the observed values. The adjusted R2, which
was used to assessed the alignment of R2 for the number of
terms and sample size involved in the model, was 0.9698, indi-
cating good fitness of the model. The predicted R2 of 0.9221
is in reasonable agreement with the adjusted R2 of 0.9698.
The lower value of CV (1.49%) shows that variation between
the observed and predicted values was low (Betiku and Ajala
2014). The measure of signal-to-noise ratio is determined by

(a) (b)

(c) (d)

(e) (f)

Figure 1. Response surface plot.
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the adequate precision and a value greater than 4 is required
(Noordin et al. 2004). The value obtained in this study was 31.7,
which indicates an adequate signal. The ‘lack of fit F-value’ of
2.28 implies an insignificant lack of fit relative to the pure error.
The insignificant lack of fit suggests that themodel is significant.
The prediction of WCOME yields by the ANN model is shown
in Table 2. The WCOME yield ranged between 66.63 and 95.01
wt.%. The maximum WCOME yield of 95.01 wt.% predicted by
the RSMmodel was obtained at a reaction temperature of 55°C,
a catalyst amount of 1 w/v, a reaction time of 70 min and a
methanol-to-oil ratio of 6:1.

3.2.1. Process parameters interactions
Statistica 12 software (StatSoft Inc., Tulsa, OK, USA) was further
used to generate response surface plots in order to investigate
the interactions between the process variables investigated in
this study. Figure 1(a) shows the surface plot for the WCOME
yield as a function of catalyst amount and methanol-to-oil ratio,
when the temperature and reaction time are kept constant. The
figure shows that as the methanol-to-oil ratio increases from 3:1
to 7:1, there is an increase in the WCOME yield. This is because
an increase in the methanol-to-oil ratio favours the WCOME
yield. It has been reported that a sufficient methanol-to-oil ratio
increases the biodiesel yield (Demirbas 2008; Hameed, Lai, and
Chin 2009; Olutoye, Lee, and Hameed 2011; Betiku, Akintunde,
andOjumu2016). It canbe seen fromFigure 1(a) that beyond7:1,
there was no significant increase in the WCOME yield. Although
an excess methanol-to-oil ratio quickens the reaction, beyond
certain required ratio, it may result in esters recovery complica-
tion (Goff et al. 2004; Rashid et al. 2008). Hence, an optimum
methanol-to-oil ratio should be selected on the overall eco-
nomics and equilibrium WCOME yield (Sarve, Sonawane, and
Varma 2015). Figure 1(a) also reveals that the catalyst had a sig-
nificant impact on the WCOME yield. The yield increases from
71 to 94 wt.% as the catalyst amount was increased from 0.9
to 1.1 w/v, but beyond certain amount of catalyst, the yield
decreases. This may be attributed to the saturation of catalyst
particle inside the reaction medium and hence lower the yield
of WCOME (Sarve, Sonawane, and Varma 2015).

Figure 1(b) represents the surface plot showing the interac-
tion between the methanol-to-oil ratio and reaction time with
the WCOME yield. From the plot, the WCOME yield increases
as both methanol-to-oil ratio and time increase. As the reaction
time increases from 40 to 75 min, there is a sharp increase in
the WCOME yield. This is because sufficient time is needed for
the reaction to attain equilibrium since transesterification reac-
tion is a reversible process (Ma andHanna 1999). Beyond 75min,
the WCOME yield decreases. It has been reported that a longer
reaction time enhanced the hydrolysis of esters and hence may
result in the loss of esters and also cause soap production due
to fatty acids formation (Eevera, Rajendran, and Saradha 2009).
Figure 1(b) reveals that the WCOME yield attained > 90 wt.% at
a reaction time of 75 min and a catalyst amount of 1 w/v.

Figure 1(c) depicts the interaction between the catalyst
amount and the reaction time. The surface plot reveals that the
reaction timeand the catalyst amounthavea strong influenceon
theWCOME yield, but the reaction timehadmore influence than
the catalyst amount. This is because in order to overcome the

slow reaction rate, sufficient time is needed to foster the disper-
sion ofmethanol in the reactionmedium (Leung,Wu, and Leung
2010). The maximumWCOME yield of 94wt.% was attained at a
reaction time of 70min and 1w/v catalyst amount. The plot also
shows that increasing the catalyst amount beyond certain level
leads to a decrease in theWCOME yield. The decrease inWCOME
can be attributed to the saturation of catalyst particle.

Figure 1(d) shows the mutual interaction between the tem-
perature and methanol-to-oil ratio on the WCOME yield. The
increase in the WCOME yield is observed when the temper-
ature increases from 40°C to 45°C and methanol-to-oil ratio
increases from 3:1 to 7:1. The plot reveals that the WCOME yield
of> 90wt.% was achieved at a temperature > 50°C and at a
methanol-to-oil ratio > 5:1. Thedecrease inWCOME is observed
when the temperature is high and the methanol-to-oil ratio is
low. The influence of catalyst amount and reaction tempera-
ture on the WCOME yield is illustrated in Figure 1(e). The plot
reveals that both catalyst amount and temperature had a signif-
icant impact on the WCOME yield, but that the catalyst amount
hadmore influence than the reaction temperature. The effect of
catalyst amount was more pronounced than the reaction tem-
perature at a lower catalyst amount. The maximum yield (94
wt.%) was attained at a catalyst amount of 1w/v and a reaction
temperature of 55°C. The shape of the surface plot in Figure 1(f)
reveals the significance of the interaction between the reaction
time and reaction temperature. The effect of reaction time was
more obvious at low reaction temperatures. A higher yield of
WCOME is observed at higher reaction times because sufficient
time is needed for the reaction media to attain equilibrium, and
hence favours the production of WCOME.

3.3. Processmodelling ofWCOME production by ANN

The prediction of the WCOME yield was obtained by ANN with
Levenberg–Marquardtbackpropagationalgorithmconsistingof
an input layer with four input process variables (temperature,
catalyst amount, reaction time and methanol-to-oil ratio) and
one output layer with single output variable (WCOME yield).
The best combination of the transfer function for the input to
hidden layer and hidden to output layer was determined by
studying nine different pairs of these transfer functions (Table 6).
Due to the lower and higher values obtained for MSE (0.5406)
and R2 (0.9901), respectively (Table 6), the hyperbolic tangent
transfer function (tansig) was chosen for the input to hidden

Table 6. Comparison of different transfer functions of Levenberg–Marquardt
backpropagation with 10 neurons in hidden layers.

Transfer function

Input-
hidden

Hidden-
output

Number of
iteration MSE R2 Linear equation

Logsig Logsig 179 41.45 0.3396 y = 0.5099x+ 43.47
Tansig Tansig 124 18.26 0.6869 y = 0.7895x+ 16.65
Purelin Purelin 158 28.16 0.4543 y = 0.4779x+ 44.859
Logsig Tansig 102 4.37 0.9342 y = 0.8966x+ 9.7535
Logsig Purelin 65 7.59 0.8579 y = 0.8196x+ 15.831
Tansig Purelin 38 0.5406 0.9901 y = 0.9657x+ 2.9811
Tansig Logsig 159 15.91 0.7758 y = 0.5812x+ 36.977
Purelin Tansig 187 19.99 0.6345 y = 0.6778x+ 28.46
Purelin Logsig 186 33.92 0.4114 y = 0.3174x+ 59.652
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Figure 2. Optimal ANN architecture used for the prediction of the WCOME yield.

Figure 3. Optimal number of hidden neurons.

layer mapping, while purelin was chosen for the hidden to out-
put layer mapping. Hence, tansig-purelin transfer function was
considered for the developed ANN model. The optimal num-
ber of hidden neurons was carefully selected by trial-and-error
procedure. For this purpose, 2–20 hidden neurons were inves-
tigated for constructing the network architecture. Each one of
this hidden neuron was then trained several times and further
appraised to produce the least output error based on MSE and
the highest value of R. The best topology chosen for the esti-
mation of WCOME yield was 3-10-1. Figure 2 shows the ANN
optimum architecture for the obtained topology for the estima-
tion of theWCOME yield. Figure 3 illustrates the variations in the
MSE value for training, validation and testing of the developed
ANN model. It is obvious from the plot that the minimum MSE
obtained for training, validation and testing of the data sets are
at hidden neuron 10. Table 7 shows theMSE and R of the hidden

Table 7. Predicted model R and MSE analysis for hidden neuron 10.

Sample R MSE

Training 20 0.9956 0.1974
Validation 5 0.9866 1.8676
Testing 5 0.9769 0.5879

neuron 10 for training, validation and testing of the data sets.
Correlation coefficient plots for the training, testing, validation
and whole data sets are presented in Figure 4. The prediction
of WCOME yields by the ANN model is shown in Table 2. The
WCOME yield ranged between 68.87 and 93.99wt.%. The max-
imum yield predicted by the ANN model was under the same
condition as predicted by the RSM model, i.e. at a reaction tem-
perature of 55°C, a catalyst amount of 1w/v, a reaction time of
70 min and a methanol-to-oil ratio of 6:1.
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Figure 4. Regression plots of predicted values against actual for the ANNmodel.

Table 8. Evaluation of predictive of ANN and RSMmodels.

Parameter RSM ANN

R 0.992140 0.995035
R2 0.984342 0.990095
RMSE 0.893551 0.735273
MAE 0.790667 0.398667
SEP 1.052119 0.865754
AAD 0.937611 0.493019

3.4. Comparison of the predictive capability of RSM and
ANNmodels

The prediction capabilities of RSM and ANN models were eval-
uated and compared based on statistical parameters: R, R2,
RMSE, MAE, SEP and AAD. The results obtained are shown in
Table 8. These revealed that the ANN model outperformed the
RSMmodel, although bothmodels performed satisfactorily. The
values of R (0.9950), R2 (0.9901) obtained for the ANN model
demonstrated higher precision and accuracy compared with
R (0.992140) and R2 (0.984342) obtained for the RSM model.

The values of RSME, MAE, and SEP obtained for both models
showed that the ANN model had lower error values than the
RSMmodel. Furthermore, Figure 5 shows the plots of the actual
and predicted values of both ANN and RSM models against the
experimental runs. The figure shows that ANN predicted values
closely aligned to the actual values than the RSM predicted val-
ues. The superiority of ANN over RSM observed in this study is in
agreement with previous reports (Avramović et al. 2015; Betiku
and Ajala 2014; Betiku et al. 2016; Sarve, Sonawane, and Varma
2015). Betiku et al. (2016) evaluated the performance of RSM,
ANN and ANFIS in the prediction of acid value of palm kernel oil
and proved that ANN was the best of the three modelling tools.
BetikuandAjala (2014)demonstrated the superiorpowerofANN
over RSM in predicting the biodiesel yield from methanolysis of
yellow oleander oil with plantain peels as the heterogeneous
base catalyst. Avramović et al. (2015) showed that ANN is more
consistent in capturing the nonlinear relationship between the
process parameters and biodiesel yield obtained from ethanol-
ysis of sunflower oil with calcium oxide as the catalyst, while
Sarve et al. (2015) showed in their studies of ultrasound-assisted
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Figure 5. Experimental runs as a function of predicted and actual values.

biodiesel production from sesame oil with barium hydroxide as
a catalyst that ANN was a better predicting tool than RSM.

4. Conclusions

In this study, RSM and ANNmodels were developed for predict-
ing the conversion of WCO into WCOME using a homogeneous
base catalyst. DoE of RSM was employed to generate 30 experi-
mental conditions via the use of a four-factor–five-level CCRD.
The predictive capability of RSM and ANN was evaluated and
compared using statistical parameters viz: R, R2, RMSE, MAE, SEP
and AAD. The results of these statistical parameters confirmed
that the ANN model was more accurate and precise than the
RSM model, although both models performed reasonable well.
The properties of the WCOME produced satisfied the biodiesel
standard specifications (ASTMD 6751 and EN 14214).
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