
American Journal of Engineering and Technology Research                             Vol. 12, No. 1, 2012 

 

59 

 

REYNOLDS NUMBER DEPENDENCE ON THE EFFECT OF AXIAL 

STRESS ON UNSTEADY POLYVINYL CHLORIDE PIPELINE FLOW 

O.M. Oyewola* and A.P. Okediji 
Department of Mechanical Engineering,  

Faculty of Technology, University of Ibadan, Nigeria. 
*Corresponding Author Email: ooyewola@yahoo.com 

Abstract. This paper studies the Reynolds number dependence on the effect of axial stress on 

unsteady pipeline flow. The unsteadiness is caused by sudden and gradual closure of the valve 

situated at the downstream end of the pipe. The effect generated by the unsteadiness is controlled 

by varying the Reynolds number (Re). Measurements were taken at different part of the pipe for 

a full and half closure of the valve at various Reynolds numbers. The pressure head obtained 

increase as Reynolds number (Re) increases, measurement clearly shows that Reynolds number 

majorly control the response of the pressure head although other factors like pipe geometry and 

wave speed which is a function of material properties and working fluid also contribute. 

Reynolds number control the magnitude but the wavelength of oscillation is unaltered. For all 

values of Reynolds numbers considered in this study (3750, 4125, 4750, 5250, 6000) with 

Polyvinyl Chloride (PVC) material used as pipe, its variation caused pressure head to increase, 

decrease with time until another steady state is reached which make it constant after a particular 

time for the Reynolds number considered. 
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Introduction 

Hydraulic transient in pipes have been a subject of both theoretical study and intense practical 

interest for more than hundred years, as a result of this, transient fluid flow pose interesting 

problems in fluid dynamic. Domestic and industrial application makes it interesting to the 

researchers. Hydraulic transient events are disturbances in the water caused during a change in 

state. The components of the disturbances are pressure and flow changes at a point that causes 

propagation of pressure waves throughout the distribution system. The pressure waves depend on 

the elasticity of the water and that of the pipe walls, as these wave propagate, they create 

transient pressure condition. Over time, damping actions and friction reduces the waves until the 

system stabilizes at a new steady state (Don, 2005). 

 

Interfering with the flow of fluid in pipes has been the subject of numerous studies (Warsaw 

2007; Kirshore 2007; Bryan and Duncan 1992). This has led to consideration of single and 

networks of pipe in order to study the effect of axial stress through the interference of valve at 

the downstream end of the pipe, although, numerical study has been mostly employed Re>4000, 

however, few records of experimental study at low Reynolds number exist. For example, Kazumi 
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et al (2009) carried out a study on dynamic long pipe and they showed that with a pump acting 

as source of varying the Reynolds number and powered by a generator of electric power 

2.5×10
5
kw, it was reported that for Re=47,686.2, the pressure recorded was 1MPa in about 0.1 

second. Also, Kirshore, (2007) carried out transient analysis in pipe networks, method of 

characteristic was used in the numerical simulation of a single long pipeline with reservoir 

upstream and valve downstream, with Reynolds number (Re=91,661.4), the pressure head rose 

from 120m to 232m within about 0.1second and are maintained for a longer duration. Similarly, 

Warsaw, (2007) uses hydraulic system with a Pump and controlled valve at the end of a steel 

pipe, the unsteadiness was caused by shifting the controlled valve directing the liquid flow, and 

pressure rise was measured from 1.85MPa to 9.65MPa in 0.1s. Moreover, numerical simulation 

of hydraulic pipe transient has been carried out employing method of characteristic and 

confirmed as the best method for the simulation (Gilberto, 2004 and Sharker, 2010).  

 

Similar work was carried out by Yukio et al (2002) where upstream finite difference method was 

used with pipe length 54.37m and 6.29m reservoir elevation, the report shows that after the 

closure of the valve for velocities 0.10m/s and 0.11m/s, the negative pressure does not reach 

evaporation point and was considered as one-phase flow while at velocity 0.12m/s, the negative 

pressure head reached evaporation point and was considered as two-phase flow. Furthermore, 

Darmstadt (2004) used computational fluid dynamics to study dynamic interaction in hydraulic 

pipeline system, result of three methods were considered viz. concentrated parameter method, 

distribution parameter method and transfer matrix method. It was noted that the online coupled 

simulation is possible by the assignment of two parallel-working personal computers which 

respectively implement CFD calculation and the computation with the characteristic method. 

Mohammed et al (2005) also reviewed numerical simulation for 1D water hammer equation and 

noted that method of characteristic (MOC) is the most popular method, other techniques include 

wave plan, finite difference (FD) and finite volume. 2D mass and momentum equations together 

with the numerical solutions were also studied, while the boundary conditions were noted to 

include pumps, valves, nozzles, turbines, surge tanks, heat exchanger and condensers. 

 

Axial stress effect has been studied hitherto mostly on large Reynolds number (Re>4000) 

turbulence flow, but this study looks at unsteadiness with various Reynolds number to see it 

effect. Masaji et al (2002) studied the effect of axial stress on unsteady pipeline flow on large 

Reynolds number. They showed that for a Reynolds number of Re=4450 and Re=6100 which are 

very high (turbulent flow), high pressure head were noticed after the sudden closure of the valve 

within a short period of time. The pressure head and time for each of the Reynolds number 

considered were different. The higher Reynolds number has the higher pressure head followed 

by the lower Reynolds number. This present study focuses primarily on the dependence of 

varying the Reynolds number (turbulent flow) as a control in studying the effect of sudden and 

gradual closure of valve at downstream end of the PVC pipe. This is necessary because PVC 

pipe is commonly used in today’s building and reticulation system. It should be noted that PVC 

pipe is cheaper and not being corroded with time although it also have its own disadvantage. 
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Experimental detail and measurement method 

Because of Reynolds number required for this present study, the height of water in the reservoir 

used in the Masaji et al 2002 was inadequate in order to vary the Reynolds number, also with the 

two high Reynolds number considered, it was not again appropriate to ascertain the dependency 

of Reynolds number in determining the effect of axial stress on unsteady fluid flow. 

Accordingly, measurement were made in the newly developed outline, driven by a free fall 

(gravitational acceleration) with the water level at the upstream was 4.37m relative to the valve 

at the downstream (fig. 1). Four polyvinyl chloride (PVC) pipes are connected to the reservoir of 

capacity 7.57m
3
 (neglecting the pipe close to the reservoir) with dimensions L1=3.66m, 

L2=3.66m, L3=3.66m, L4=2.21m. The pipes has uniform internal diameter (D=0.025m) with L2 

having height 2.06m relative to the valve at the downstream end, the wave speed, (a) used was 

497.73m/s (
  211 



eE
KD

k

a


, Bergant et al, 2006) where k is the bulk modulus of 

elasticity of the fluid,  is the density of the fluid , D is the internal diameter of the pipe, e is the 

thickness of the pipe, E is the Young modulus of elasticity of material and µ is the Poisson’s 

ratio of the material. Velocities were obtained by allowing a free flow initially U1 = (Q1/A) 

where Q1 is the flow rate of the velocity considered (m
3
/s) and A is the area of the pipe used. 

 

Five different Reynolds number (


uD
Re , where u is the velocity for a steady state, D is the 

internal diameter of the pipe and   is the kinematic viscosity of the fluid) were considered 

(3750, 4125, 4750, 5250, 6000). Air valve (32mm internal diameter) situated at the downstream 

of the valve was used to generate the unsteadiness with measurement taken at different part of 

the pipe for various possibility of the Reynolds numbers considered. The repeatability of the 

experiment under these conditions was to ascertain the dependency of Reynolds number on the 

response of backward flow along stream-wise direction. 
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Fig. 1. Schematic Arrangement of the Experiment. 

 

A Bourdon pressure gauge with a span of (0-2 bar) situated at various distance to the control 

valve and having an error of (±5%) was used to measure the pressure after sudden and gradual 

closure of the valve, pressure was converted to pressure head by means of (P=  g(H-Z)) where P 

is the pressure in N/m
2
,   is the fluid density, g is the gravitational acceleration, H is the 

pressure head in (m) and z is the point from which measurement were taken. 

 

After the sudden closure of the valve at the downstream end of the pipe, measurement of 

pressure head were taken for each Reynolds number (Re) considered(3750, 4125, 4750, 5250, 

6000), in order to attain some level of accuracy for pressure measurement, experiment was 

repeated for each Reynolds number for 5 times. Measurements were also taken after half closure 

of the valve for different Reynolds number and at the same time different part of the pipe 

carrying fluid. Measurements were made at 0.13m, 2.36m, and 6.17m relative to the valve 

location. In all the measurement, after every reading has been taken, the reservoir was re-filled to 

maintain constant water level as stated by Masaji et al. 2002. Using a propagation of error 

analysis, the uncertainty in the measurement of pressure head (H) was about %5 . This was 

estimated by measuring H 5 times at several locations relative to the valve position and at each 

location, the uncertainty was %5  of the mean value.  

Pressure Head 

The measurement of pressure head provides means of determining the response of sudden or 

gradual closure of the valve. Measurement of pressure head along stream-wise direction for a 

fully closed valve with pressure gauge positioned at (0.13m, 2.36m, and 6.17m) from the valve 

are represented in Fig. 2, 3 & 4 respectively for various Reynolds number. 
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Fig. 2. Pressure Head (m) Against Time(s) for 0.13m from the Control Valve (fully closed). 

 

 

Fig. 3. Pressure Head (m) Against Time(s) for 2.36m from the Control Valve (Fully closed) 

 

 

Fig. 4. Pressure Head (m) Against Time(s) for 6.17m from the Control Valve (Fully closed). 

 

All distributions almost show the same behavior: Head (m) increase in a short time, decrease, 

increase again and then decrease to maintain a constant value. This value seems to be controlled 

by the Reynolds number applied; this is evident in fig. 2 with Reynolds number (Re=6000) 
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having the highest value of head and follows in Figures 3 & 4 accordingly. It should be noted 

that while it takes 0.5second (regardless of the Reynolds number applied) for pressure head to 

reach maximum point when measurement was taken at 0.13m from the valve it takes 1seconds 

for reading taking at 2.36m and 6.17m from the valve respectively. The reason for this is not yet 

clear but might reflect the changes in the pipe orientation from L2 to L3 and this might possibly 

influence the flow structure and geometry. This is not surprising since back flow (reverse flow) 

depend strongly on pressure gradient. This reverse flow developed as a result of pressure build 

up in the entire region of the pipe. It is interesting to  note that because of the material property 

of the PVC pipe, the pressure build up occur quickly as reflected in the distribution. This effect 

may cause sudden failure of PVC pipe in practice. 

 

The present results would suggest that water hammer and pressure wave occur rapidly which 

translate to strong unsteadiness in PVC pipeline flows when the valve is closed suddenly. The 

different effect is the possibility of buckling of the system. The effect is stronger at high 

Reynolds number. It was seen that Reynolds number control the magnitude but the wavelength is 

unaltered as deduced in all the distributions. 

 

The previous results show that Reynolds number alters the degree of unsteadiness as a result of 

sudden full closure of the pipe in a PVC pipe material. It is interesting to observe that the 

wavelength and the manner of alteration when the valve is half closed is similar to fully closed 

valve as showed in figures 5, 6 and 7. 

 

 Fig. 5, 6 & 7 shows measurement for a half closed valve for variation of Re (3750, 4125, 4750, 

5250 and 6000) with pressure gauge positioned at different point on the pipe. i.e (0.13m, 2.36m, 

and 6.17m) 

 

 

Fig. 5. Pressure Head (m) Against Time(s) for 0.13m from the Control Valve (Half closed). 
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Fig. 6. Pressure Head (m) Against Time(s) for 2.36m from the Control Valve (Half closed). 

 

 

Fig. 7. Pressure Head (m) Against Time(s) for 6.17m from the Control Valve (Half closed). 

It should be noted that irrespective of the Reynolds number and distance from the control valve, 

the minimum head occurs at about H=2m but the time it takes differ for the pressure gauge 

position at x=0.13m. For example, at x=0.13m, minimum head occur at t=1.5 second and t=2.0 

second at 2.36m and 6.17m. The result would suggest that the closer to the control valve the 

faster it takes for the pressure wave to die out. 

 

Similar explanation holds for the second peak value which occurs at the same head (h=5.13m) 

for t=2.0 second at x=0.13m and t=2.5 seconds at x=2.36m and 6.17m. This is not surprising 

since there is time lag for initial mean pressure head at x=0.13m and other locations. The overall 

observation would suggest that Reynolds numbers only alter the initial mean head.  

  

It can clearly be shown that the distribution shows similar behavior as when the valve is fully 

closed only with the exception of reduced values of Head (m) due to slight disturbance caused by 

half closure of the valve. It can clearly be shown that due to high Reynolds number (Remax=6000) 

employed, regardless of its value, the pressure head quickly returns to a constant value which 

suggest that Reynolds number majorly dictate the values of pressure head and its time which is in 

agreement with Masaji et al 2002. 
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Reynolds number effect 

To further ascertain Reynolds number dependence, Figures 8 and 9 shows Re distribution of the 

maximum pressure head (Hmax) for various Reynolds number and locations both for fully 

closed valve and half closed valve. 

 

 

Fig. 8. Distribution of Maximum Head Against Reynolds Number for Fully Closed Valve 

 

In both cases (fully closed and half-closed valve) and for all locations, Reynolds number control 

the magnitude of the pressure head. It is evident from the figures that the Reynolds number 

increase, the maximum pressure head increases.  
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Fig. 9. Distribution of Maximum Head Against Reynolds Number for Half Closed Valve. 

 

Bergant et al (2006) indicated the work of Joukowsky who argued that change in the initial 

velocity of the flow controls the change in head obtain in return ( V
g

a
H  , where (a) is the 

wave speed, g= gravitational acceleration, H is the Head, V is the velocity). This is evident in 

figures 8 & 9 that the higher the Reynolds number, the higher the pressure head obtained because 

of the linear relationship between the pressure head and the velocity. According to Joukowsky, 

change in pressure head were 7.62m, 8.38m, 9.67m 10.67m and 12.19m for the present Reynolds 

number considered, whereas in the present experiment, the change in pressure head obtained 

when taking measurement at 0.13m for a fully closed valve were 6.53m, 7.63m, 9.33m, 10.13m 

and 11.63m. The difference in the variation may suggest possibility of the head losses which 

includes; minor losses due to obstruction (contraction, elbow and expansion) and friction which 

is a function of Reynolds number. It should be noted that with the use of PVC material as pipe, 

the effect of wave speed travelling upstream (Reservoir) and downstream (valve) as evident in 

the pressure head was quickly damped forming another steady state. It is therefore recommended 

that gradual closure of the valve will prevent buckling effect and failure in practise.  

Conclusions 

Pressure head measurement were carried out for various Reynolds number and streamwise 

locations for flow in a polyvinyl chloride pipe having valve at the downstream end and reservoir 

at the upstream with a view to determine the dependence of Reynolds number on unsteady 

pipeline flow. The results indicate that irrespective of the Reynolds number and locations, 

pressure head increase, decrease and later maintain a constant value transiently. For both cases of 

valve, it was observed that pressure head respond quickly closer to the valve than away from the 

valve with fully closed valve have the higher pressure head than the half closed valve. 



American Journal of Engineering and Technology Research                             Vol. 12, No. 1, 2012 

 

68 

 

Furthermore, Reynolds number controls the magnitude and oscillation of the maximum pressure 

head irrespective of the streamwise locations and the status of the valve. 
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