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A new approach for determining the coefficients of a complex-valued autoregressive (CAR) and complex-valued autoregressive
moving average (CARMA) model coefficients using complex-valued neural network (CVNN) technique is discussed in this
paper. The CAR and complex-valued moving average (CMA) coefficients which constitute a CARMA model are computed
simultaneously from the adaptive weights and coefficients of the linear activation functions in a two-layered CVNN. The
performance of the proposed technique has been evaluated using simulated complex-valued data (CVD) with three different
types of activation functions. The results show that the proposed method can accurately determine the model coefficients
provided that the network is properly trained. Furthermore, application of the developed CVNN-based technique for MRI K-
space reconstruction results in images with improve resolution.

1. Introduction

Parametric modeling technique has been applied to almost
all fields of endeavor, these include but not limited to the
the field of biomedical signal processing [1–9], digital image
processing [10–12], building and built environment industry
[13], nuclear plant [14], and communication [15, 16]. In
some of the aforementioned fields, parametric modeling has
been applied to determine an unknown system by the knowl-
edge of the input and output data (system modeling and
identification), or to predict the future values based on past
output values (linear prediction), or for filtering purpose
(signal filtering), or to find the frequency content or response
of a system (spectral estimation). The widely used parametric
modeling technique includes autoregressive (AR), moving
average (MA), and autoregressive moving average (ARMA).
Mathematically, an ARMA model involves representation of
input-output data of a system by a difference equation of the
form

y(n) = −
p∑

k=1

ak y(n− k) +
q∑

k=0

bkx(n− k), (1)

where ak and bk are the model coefficients, p and q are real-
valued model order for the AR and MA parts, respectively
[17–23]. Processes with spectral poles or narrow peaks are
preferably modeled with AR technique whereas MA models
are suitable for processes with spectral zeros or narrow
valleys, and ARMA models are suitable for processes with
both narrow peaks and valleys [18, 19, 24].

In recent times, the introduction of complex-valued
neural networks (CVNNs) has widened the scope and
applications of artificial neural network (ANN) [25–34]. The
inevitability of dealing with complex-valued data (CVD) has
shown the indispensability of this emerging mathematical
paradigm especially in the field of adaptive signal processing,
radar systems, digital signal processing, magnetic resonance
imaging (MRI) reconstruction, digital communications sys-
tems, speech processing, remote sensing, optoelectronics,
quantum neural devices and systems, spatiotemporal anal-
ysis of physiological neural systems, biomedical signal pro-
cessing, and artificial neural information processing, just to
mention a few.

This evolving paradigm has gained much attention
not only because there are situations where CVNNs are
inevitably required or greatly effective than its counterpart,
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the real-valued neural network (RVNN), but because of its
usefulness which is enshrined in the fundamental theorem of
Algebra [25–27]. Another reason largely responsible for the
increasing popularity of this evolving field is in the treatment
of CVD as an ordered pair rather than treating it as a multidi-
mensional data [29]. Treating a CVD as a multidimensional
data eliminates the correlation relationship between the real
and imaginary components of such a CVD and this often
results in an increase in computational complexity [33–35].
Furthermore, CVNN technique reduces ineffective degree
of freedom in learning, thus achieving better generalization
characteristics than the RVNN technique [29].

If the coefficients in (1) are complex number and either
y(n) or x(n) is CVD, then the ARMA model is referred to as
a complex-valued autoregressive moving average (CARMA)
model.

Despite the success of parametric models especially AR
and ARMA models in various areas of applications [6, 7, 10–
12], it has two main drawbacks namely, the difficulty in
estimating the model order and complexity associated with
the determination of model coefficients.

The accuracy of the resulting model parameters highly
depends on the methods used in determining the unknown
model parameters. The use of inaccurate parameters often
leads to introduction of artifacts, erroneous peaks and
valleys, outrageous predicted values, system instability, and
the list continues [2, 11, 18].

Several methods have been suggested for ARMA model
coefficients determination, these can be broadly divided into
two groups, namely optimal and suboptimal techniques [2–
5]. Optimal technique involves simultaneous determination
of the AR and MA coefficients while suboptimal technique
normally involves a two-step procedure, firstly, the determi-
nation of AR coefficients, and secondly the estimation of the
MA coefficients from the residual error or the estimated AR
coefficients. The nonlinear ARMA model equation demon-
strates the difficulty in estimating the model coefficients
even when the autocorrelation sequence is exactly known.
The optimal approach involves significant computations and
sometimes fails to converge or may converge to the wrong
solution [2]. Besides, it also produces poor resolution for
short data length and as such is rarely used rather the
suboptimal technique is often preferred.

In overcoming the computational problems associated
with the optimal technique, a suboptimal method which
takes advantage of the existing linear relationship between
the estimated autocorrelation matrix and the AR coef-
ficients has been suggested. One of the most successful
suboptimal-based autocorrelation approaches is the mod-
ified Yule Walker (MYW) method. In this approach, the
AR coefficients are firstly computed, which is then fol-
lowed by the determination of MA coefficients [2, 3, 5,
15, 16, 21]. Autocorrelation, covariance, and least squares
approach are among the known methods of computing
the AR coefficients. The autocorrelation technique has been
shown to yield AR spectra with the least resolution among
these methods. The decrease in resolution is due to the
inherent windowing in the data matrix. The accuracy of
the coefficients obtained depends so much on the value of
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Figure 1: Artificial neural network structure.

the estimated autocorrelation values. The covariance matrix
solution produces AR parameters whose resulting spectra
have more false peaks and greater perturbations of spectral
peaks from their correct frequency locations than other
approaches. Spectral line splitting, the placement of two or
more closely spaced peaks in the spectrum where only one
should be present, has been observed in forward prediction
least squares approach [2, 18, 21].

The second problem associated with parametric mod-
eling approach is the appropriate method of model order
estimation. Because the optimal model order is not known
a priori, the traditional approaches have always been to
evaluate various model orders based on some error measure
criteria. Several model order determination techniques have
been suggested in literature among which are final prediction
error (FPE), Akaike information criterion (AIC), Minimum
description length (MDL), and Hannan and Quinn (HNQ)
[2, 5, 18, 36–42].

An optimal technique for determining ARMA model
coefficients using RVNN approach has been reported in [6,
7]. Though this method accurately estimates ARMA model
coefficients, yet it is only applicable to RVD and as such can-
not be used for CVD. In this paper, a CVNN-based method
for estimation of CAR and CARMA model coefficients is
presented. The approach simultaneously estimates the model
coefficients from the weights and coefficients of the adaptive
SC activation functions in the hidden and output layer of a
properly trained CVNN.

The remaining part of this paper is organized as follows.
Development of CVNN-based parametric model for CAR
and CARMA is contained in Section 2 while the performance
analysis of the developed technique is contained in Section 3
and conclusion is contained in Section 4.

2. Development of CVNN-Based
Parametric Model

ANN (i.e., RVNN and CVNN) is a global search technique
that emulates the biological neurons of the human body.
It is a general mathematical computing paradigm that
models the operations of biological neural systems with
unique characteristic of having massively parallel distributed
structures and high capability of learning and generalization
[30, 43]. A typical ANN consists of interconnection of
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simple processing elements called nodes. These nodes are
arranged in layers and are joined together by interconnection
of synaptic weights to form structures, the most popular
method of arrangement is called feedforward neural network
[6, 7, 43].

A typical ANN structure shown in Figure 1 consists of
one or two types of layers namely, the hidden layer and the
output layer. The first interface though passive in nature is
where data are fed to the network, which is called the input
nodes. Another interface where processed data are released
out of the network is the output layer and between these
two layers are the hidden layers. Each layer except the input
layer consists of one or more processing unit. A processing
unit is made up of an adder and an activation function.
The adder sums the weighted input values and computes
the input to the activation function. An activation function
maps the input to a new output range, examples of which
include, sigmoid, tanh, linear, cubic, and radial. There are
weights on each side of the processing unit in the hidden
layer (left and right hand side) of the input layer and one
side (left hand side) of the output layer. These weights are
altered during the training process to ensure that the inputs
produce an output that is close to the desired value [30].
There is interconnection of weights between nodes in the two
consecutive layers but there exist no connections between
nodes in the same layer.

The combination of the large sets of connection weights
and nonlinear activation functions makes ANN an ideal
tool in estimating, classification, and predicting some of the
linear and nonlinear systems [6, 7]. In recent times, RVNN
has been extended to complex-number domain, where the
input, synaptic weights, activation function, and the error
propagation were made to process CVD. Such networks are
normally referred to as CVNN.

2.1. Choice of Activation Function for CVNN-Based Para-
metric Model. CVNN also shares similar characteristics and
properties with RVNN, the only difference is the nature of
data being processed. Similar to RVNN, CVNN training can
also be broadly divided into two classes namely supervised
and unsupervised learning. In a supervised learning, the
network is trained by presentation of sets of input and output
data (target data) to the system. During this phase, the
weights are successively adjusted based on a set of inputs
and desired output presented to the network. The error
from learning is back propagated for weight adjustment and
the most popular method of error optimization is based
on the minimization of the output mean squared error
(MSE) [44–50]. In an unsupervised learning, the network is
presented with just the input data and the network adjusts
itself to produce an output. In this work, a two-layer CVNN
approach for weight and coefficients update for CVD has
been proposed. The network leverages on the nonlinearity
nature of the activation function and back propagation
algorithm in determining the linear and nonlinear coefficient
values of the CAR and CARMA model.

The major challenge mitigating against the use of
complex activation in CVNN is the issue of boundedness and

differentiability nature of the intended activation function.
In overcoming these problems, two major approaches have
been reported, namely, fully complex (FC) and split complex
(SC) activation function [51–55].

The FC approach uses an activation function that
can satisfy the conflicting requirements of boundedness
and differentiability of a complex function [51, 52]. The
simplified version of the FC approach has been shown to be
equivalent to the complex conjugate form of SC, provided
the activation function used is an elementary transcendental
function (ETF). The introduction of adaptive normalized
learning rate to [51] by minimization of the instantaneous
output error of the FC-BP results in improved performance
of the algorithm [56].

Furthermore, in overcoming the unbounded problem
associated with complex activation function, Georgiou and
Koutsougeras in [54] identified the most desirable properties
of complex activation functions and thereafter suggested
a practically realizable fully normalized complex activation
function. The proposed activation function can process
sinusoids at the same frequency (phasor) but less efficient
in learning nonlinear phase variation between the input and
target signal.

The second approach that avoids the unboundedness in
CVNN activation functions and which has been proved to
be a special case of the FC is the use of SC approach. In
SC approach, two real-valued activation function (RVAF) are
used to process the in-phase and quadrature components
of the input signal [57–62]. This method of processing
CVD has been shown to reduce the information redundancy
associated with the hidden neurons of a FC approach, more
so, hardware implementation of this is easier than that of FC
[62, 63].

2.2. Development of CVNN-Based Parametric Modeling Equa-
tions. The general form of a CARMA model shown in
Figure 2 is given by

y(n) = yR(n) + iyI(n)

= −
p∑

k=1

(aRk + iaIk)
(
yR(n− k) + iyI(n− k)

)

+
q∑

k=0

(bRk + ibIk)(xR(n− k) + ixI(n− k)),

(2)

where p and q are real value model order and (aRk + iaIk) and
(bRk + ibIk) are the complex model coefficients for the CAR
and CMA parts, respectively.

Decomposing and rearranging (2) gives the LHRP of
CARMA model as

yR(n) =
p∑

k=1

aIk yI(n− k)− aRk yR(n− k)

+
q∑

k=0

bRkxR(n− k)− bIkxI(n− k),

(3)
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Figure 2: Schematic diagram of CARMA model.

and the LHIP is expressed as

yI(n) =
q∑

k=0

bRkxI
(
n− j

)
+ bIkxR(n− k)

−
⎛
⎝

p∑

k=1

aRk yI(n− k) + aIk yR(n− k)

⎞
⎠.

(4)

2.3. CARMA and CVNN-Based CARMA Equivalent. A two-
layer CVNN for estimating CARMA model coefficients
using split complex-valued weight and adaptive activation
functions has been proposed here. The basic assumption
guiding this proposal is that either the real part of the output
yR(n) or the imaginary part yI(n) can be independently
used in obtaining the CARMA coefficients from a split
weight CVNN. Furthermore, it have been shown that a
two-layer network with one hidden layer and one output
layer is sufficient for accurate approximation and function
representation using ANN [6, 7, 43]. Thus justification for
the use of a two-layer network. Figure 3 shows the network
diagram of the proposed technique, and the analysis of this
approach using the imaginary part yI(n) of the output only
is hereby presented

yI(n) =
p∑

k=1

M∑

j=1

λeRj αRjWRkj yR(n− k)

+
p∑

k=1

M∑

j=1

λeIj αIjWIk j yI(n− k)

+
q∑

k=0

N∑

m=1

λ fRmβRmVRkmxR(n− k)

+
q∑

k=0

N∑

m=1

λ fImβImVIkmxI(n− k),

(5)

where Vkm are the split weights connecting input node k to
hidden node j for the CMA part, q is the model order for the

CMA, fm1 is the split weights connecting hidden node m to
output node for the CMA part, and Wkj are the split weights
connecting input node k to hidden node j, p is the number of
input nodes, ej1 is the split weights connecting hidden node
j to output node, gl is the bias of the hidden node l, h01 is the
bias of output node, λ is the adaptive coefficient of the output
node, αj is the adaptive coefficient of the hidden node j, and
M is the number of neuron in the hidden layer. Comparing
(5) and (3) gives

aRk = −
M∑

j=1

λeRj αRjWRkj , (6a)

aIk =
M∑

j=1

λeIj αIjWIk j , (6b)

bRk =
N∑

m=1

λ fRmβRmVRkm , (6c)

bIk =
N∑

m=1

λ fImβImVIkm . (6d)

Similarly, comparing (5) and (4) gives

aRk = −
M∑

j=1

λeIj αIjWIk j , (7a)

aIk =
M∑

j=1

λeRj αRjWRkj , (7b)

bRk =
N∑

m=1

λ fImβImVIkm , (7c)

bIk =
N∑

m=1

λ fRmβRmVRkm , (7d)

thus CARMA model coefficients can be obtained from the
split weights and coefficients of a CVNN-based CARMA
model.

Furthermore, neglecting value of k > 0 for the CMA
part in (2) leads to an All-pole system or CAR model
equation given by (8). Further neglect of all effect associated
with complex-valued white noise (input) x(n) in (2) gives
the complex linear prediction coefficients model equation,
(9).

y(n) = −
p∑

k=1

(aRk + iaIk)
(
yRk(n− k) + iyIk(n− k)

)

+ (bR0 + ibI0)(xR0(n) + ixI0(n)),

(8)

y(n) = −
p∑

k=1

(aRk + iaIk)
(
yRk(n− k) + iyIk(n− k)

)
. (9)
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Figure 3: CVNN-based CARMA model network diagram.

2.4. Power Spectra Density (PSD). The PSD associated with
the rational ARMA or CARMA model transfer function is
given as

Syy(z) =
∣∣∣∣
B(z)
A(z)

∣∣∣∣
2

σ2, (10)

where B(z) and A(z) are the z-transform of the CMA/MA
and CAR/AR parts, respectively, and σ2 is the variance of
driving white noise input of the system [2–5]. Evaluating (10)
on a unit circle gives

Syy
(
f
) =

∣∣∣1 + b1e−2iπ f + · · · + bqe−2iπq f
∣∣∣

2

∣∣∣1 + a1e−2iπ f + · · · + ape−2iπ p f
∣∣∣

2 σ
2. (11)

Similarly, the PSD of a AR/CAR system is given as

Syy(z) =
∣∣∣∣

1
A(z)

∣∣∣∣
2

σ2. (12)

Evaluating (12) on a unit circle gives

Syy
(
f
) = σ2 1

∣∣∣1 + a1e−2iπ f + · · · + ape−2iπ p f
∣∣∣

2 . (13)

3. Performance Evaluation of
CVNN-Based Technique

3.1. Simulated Data. The performance analysis of the pro-
posed modeling approach on CVD using CVNN-based CAR
and CARMA model is investigated in this section.

(1) Computation of PSD of Complex Sinusoidal Data. Con-
sider a CVD, y(n), given by

y(n) = ei2π(1/4)n + ei2π(3/8)n + σ2(w(n)) 0 ≤ n ≤ N − 1,
(14)

where an additive complex white Gaussian noise with
variance (σ2(w(n)) = (σ2/2)wR(n) + (σ2/2)wI(n) has been
added to the generated complex sinusoids. The SNR of the
data is computed as

SNRdB = 10 log 10

(∑N−1
n=0

∣∣y(n)
∣∣2

σ2

)
, (15)

where wR(n) and wI(n) represent the real and imaginary
noise components respectively. Furthermore, the coefficient
mean-squared-error measure (CMSEM) is given as

ε = 1
p

p∑

k=1

(âk − ak)2, (16)
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Figure 4: PSD plot of complex sinusoid in noise using CVNN-
based CAR model.

Table 1: Comparison of results for mixed CAR model.

Mixed CAR signal

LHRP LHIP LS

a1 −1.005− 0.002i −1.000− 0.002i −1.001− 0.002i

a2 0.812− 0.116i 0.799− 0.197i 0.787− 0.193i

ε(x10−4) 36.000 0.070 1.370

where ak and âk are the actual and estimated model coeffi-
cients, respectively, p is the model order and ε is a measure
of coefficient error power.

The PSD plot obtained is shown in Figure 4 and it
is observed that the two frequency peaks are distinct and
correctly located in the plot. As expected the peaks occurs
at 1/4 and 3/8. Thus, CVNN-based CAR model parameter
technique is satisfactory for the analysis of CVD.

(2) Mixed CAR Process. Consider a second-order CAR of the
form

y(n) = a1y(n− 1)− a2y(n− 2) + σ2w(n), (17)

where a1 = −1.00 + 0.00i, a2 = 0.80− 0.20i which is viewed
as a mixed system with real- and complex-valued coefficients
[39] with w(n) as the system complex input noise with σ2

given as

σ2 = |1 + a1 + a2|2 = 0.68. (18)

Results and Observation. The estimated CVNN-based CAR
model coefficients are shown in Tables 1 and 2. From
the MSE results observed, it shows that the CAR model
coefficients obtained using LHIP are closer to the actual
values than those obtained using LHRP approach. In Table 1,
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Figure 5: PSD: Mixed CVNN-based CAR model.

Table 2: Effect of activation function on mixed CAR model.

Mixed CAR signal

TANH CLF LAF

a1 −1.000− 0.002i −1.006− 0.001i −1.001− 0.003i

a2 0.799− 0.197i 0.795− 0.198i 0.789− 0.190i

ε(x10−4) 0.070 0.330 1.155

TANH function has been used in estimating the CAR
coefficients. In Table 2, all the activation functions produce
accurate results, however, the variance of the results obtained
for TANH activation function is smaller than the two other
activation functions. As compared to complex sinusoid,
LHIP produces lower MSE value than the LHRP approach.
The PSD plot of the results obtained is shown in Figure 5.

(3) CARMA Process. Consider a CARMA model described
by the difference equation

y(n) = a1y(n− 1) + a2y(n− 2)

+ b0x(n) + b1x(n− 1) + b2x(n− 2),
(19)

where both the CAR and CMA parts are of order 2.
Tables 3 and 4 show the results obtained for the CVNN-
based CARMA model coefficients as compared to the values
obtained for the LS approach. As expected, the estimated
CARMA model coefficients obtained from the LHIP are
closer to the actual values.

3.2. Experimental Data: Magnetic Resonance Imaging. MRI
is used to produce images of the internal section of the
human body [10–12, 42, 64, 65]. The use of Discrete Fourier
Transform (DFT) as an MRI reconstruction technique has
found common usage in the field of biomedical image
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Table 3: Comparison of results for CVNN-based CARMA model.

Coefficients Actual value
CARMA

LHRP LHIP LS

a1 −1.03 + 0.011i −1.041 + 0.043i −1.054 + 0.015i −0.998− 0.124i

a2 0.789− 0.207i 0.811− 0.245i 0.789− 0.199i 0.761− 0.160i

b0 0.100 + 0.210i 0.110 + 0.236i 0.098 + 0.231i 0.071 + 0.111i

b1 −0.340− 0.500i −0.360− 0.471i −0.349− 0.505i −0.293 + 0.379i

b2 0.100− 0.210i 0.100− 0.217i 0.100− 0.216i −0.084− 0.099i

ε(x10−4) 10.000 2.486 2.935

Table 4: Effect of activation function on CARMA model in noise.

Coefficients Actual value
CARMA

TANH CLF LAF

a1 −1.03 + 0.011i −1.054 + 0.015i −1.060 + 0.002i −1.040 + 0.010i

a2 0.789− 0.207i 0.789− 0.199i 0.801− 0.204i 0.791− 0.207i

b0 0.100 + 0.210i 0.098 + 0.231i 0.085− 0.219i 0.085− 0.219i

b1 −0.340− 0.500i −0.349− 0.505i −0.291− 0.505i −0.291− 0.505i

b2 0.100− 0.210i 0.100− 0.216i 0.112 + 0.212i 0.104 + 0.210i

ARMA filter

MA filter

AR filter

Inverse filter

Impulse input

Transient error
sequence

Magnetic resonance
component sequence

Transient error
sequence

Figure 6: TERA Modeling Technique.

reconstruction. Despite its popularity and acceptance, this
technique suffers from Gibb’s effect, introduction of artifacts,
and decrease in Spatial resolution [33, 35]. One of the
alternative methods for MRI reconstruction with improved
resolution is the use of parametric modeling technique. The
Transient Error Reconstruction Algorithm (TERA) and its
variants involve modeling the data as a deterministic ARMA
model with finite number of steps and its block diagram is
shown in Figure 6 [9–12].

3.2.1. MRI Reconstruction Method Using CVNN-Based
CARMA Technique. Detailed information regarding TERA
and its variants for MRI reconstruction is as contained in
[10–12]. Steps involve in TERA-based MRI reconstruction
are

(i) split each row or column of the MRI K-space data Sn
into Hermitian (xn) or anti-Hermitian (yn) series to

account for data symmetry in the K-space data, that
is

xn = sn + s∗−n
2

, 0 ≤ n ≤ L− 1, (20a)

yn = sn − s∗−n
2

, 0 ≤ n ≤ L− 1, (20b)

(ii) each series is modeled as the output of an IIR filter by
estimating the transfer function from the generated
finite data set.

(1) The ARMA model can be regarded as a cascade
of MA and AR filter.

(2) The unit impulse sequence δ(n) produces the
data series ε(n) as the output of the filter
HMA(z).

(3) The component x(n) is modeled as the output
of a pth order AR model excited by ε(n). Thus,

x(n) = −
p∑

k=1

akx(n− k) + ε(n), (21)

(iii) estimate the AR and MA coefficients of the Hermitian
and anti-Hermitian series.

IDFT(xn) = B
(
eiω
)

A(eiω)
= FT(εn)

FT(an)
, (22)

(iv) obtain the IDFT of the original image using

S
(
eiω
)
= 2

{
Re[FT(xn)] + i Im

[
FT
(
yn
)]}− [s0]. (23)
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Figure 7: K-space data extrapolation for a typical K-space row: (a) Negative Real Axis, (b) Positive Real Axis, (c) Negative Imaginary Axis,
(d) Positive Real Axis, (e) Negative Absolute Value, (f) Positive Absolute Value.
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Figure 8: MRI reconstructed images using (a) FFT-based technique, (b) CVNN-based CAR model, (c) CVNN-based TERA model
technique.

3.2.2. MRI Reconstruction Method Using CVNN-Based CAR
Technique. Suppose the CVNN-based CAR model is repre-
sented as

ŜR(n + 1) = �
(
SR(n), SR(n− 1), . . . , SR

(
n− p + 1

))
, (24)

where �(·) denotes the model, SR(n), SR(n − 1), . . . , SR(n −
p + 1) are the known K-space data, p is the CAR model
order, and ŜR(n + 1) is the extrapolated k-space data. The
training data SR(n) is fed to the CVNN-based CAR model
and the output ŜR(n + 1) is the estimated or the predicted
value. Once CVNN-based CAR model training is complete
or the signal decays to zero, the model coefficients can
be estimated from the SC synaptic weights and activation
function. Furthermore, for the K-space data SR(x, ky), the
row data can be split into the positive and the negative parts.
The positive part consists of data in the range 0 ≤ ky ≤
K − 1 while the negative part consists of data in the range
−K ≤ ky ≤ −1, from the positive and negative parts. Using
the first K0 data points that is (0 ≤ ky ≤ K0 − 1) to train
the CVNN-based CAR model, the remaining data points
(K0 ≤ ky ≤ K − 1) can be predicted accurately using the
proposed technique. Similarly, for the negative part, using
the first K0 data points, where (−K0 ≤ ky ≤ −1), the
remaining data points (−K0 ≤ ky ≤ −K) can be predicted
using the proposed technique.

Figure 7 shows typical extrapolated result for a typical
row in the K-space data using the proposed CVNN-based
CAR technique while K-space system in Figure 8 shows
the resulting image by the use of CVNN-based modeling
techniques.

4. Conclusion

A new method of obtaining CARMA, CAR, and CLPC coef-
ficients from a CVNN with split adaptive linear activation
function for a CVD data has been developed in this paper.

The results obtained from evaluation of LHRP and LHIP
shows that any of the two techniques is appropriate for
determination of model coefficients for a properly trained
network. Similarly, it was observed that the use of TANH
function and CLAF gives better result compared with the
result obtained using LAF. Images with improved resolution
when compared with the FFT technique has be obtained by
the use of the proposed technique though with a far time of
completion when compared with FFT technique. There is an
ongoing work to reduce the algorithm computation time so
as to be comparable with that of FFT technique. Other areas
of application of this work aside from MRI reconstruction
include nonlinear signal modeling and prediction, shape
modeling and identification, crack modeling and prediction
for automated building system and seismic signal processing.
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