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Abstract—Biomedical signals are non-stationary and a 

research topic of practical interest as the signal has time 

varying statistics. The problem of time varying is usually 

circumvented by assuming local stationary over a short time 

interval, where stationary techniques are applied. However, 

features extracted from these methods are not always 

suitable and methods for non-stationary process are needed. 

Time varying signals are more accurately represented by 

time frequency methods and received most attention 

recently. Among the time frequency methods, parametric 

modeling such as TVAR has been promising over non-

parametric methods with improved resolutions and able to 

trace strong non-stationary signal. Despite the success of 

TVAR in various applications it has drawbacks. This paper 

presents an extensive review on TVAR modelling techniques. 

Different approaches for TVAR modeling is presented and 

outlined. Principles, advantages, disadvantages of those 

techniques are presented concisely. And finally a new 

direction has been suggested briefly. 
 

Index Terms—autoregressive spectral analysis, biomedical 

signal processing, model order determination, non-

stationary signal analysis time varying coefficients, genetic 

algorithm, artificial neural network 

 

I. INTRODUCTION 

A common routine for dealing with non-stationary 

signal is to partition into several segments (window) of 

known length; after which traditional methods of nom-

parametric methods or parametric method such as Fast 

Fourier Transform (FFT) or Autoregressive (AR) is 

applied [1]. The signal is assumed to be stationary within 

this short-duration window; however, this method may 

not work well if averaging of Power Spectral Density 

(PSD) from different segments fails to capture the 

dynamics of the data [2]. Furthermore, each segment is 

assumed to be independent but for many signals, this is 

not the case as each segment is statistically depends on 

the next. While some data turn out to be too short, leading 

to that the estimates become unreliable due to few data 

points and cannot partitioned into several segments. This 

has led to a growing interest in non-stationary signal 

processing including Time-Frequency Representation 
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(TFR) techniques which able to capture changing 

dynamics of both deterministic and random signal. TFR 

also works well with short data. Available TFR methods 

are categorized into non-parametric methods and 

parametric methods as shown in Fig. 1. 

 

Figure 1.  Classification of non-stationary signal analysis 

The most extensively exploited non-parametric method 

includes Short Term Fourier Transform (STFT), 

Smoothed Pseudo Wigner-Ville (SPWV), Wavelet 

Transforms, Gabor Transform (GT), Hilbert Transform 

(HT), Continuous Mortlet Wavelet Transform (CMWT), 

Wigner-Viler (WVD) and their enhanced derivations. 

These methods are computational efficient and do not 

make any assumptions about the process except for its 

stationarity, which makes them as methodology of choice 

particularly in situations where long data need to be 

analyzed. A good summary of properties, mathematical 

model and application of these techniques can be found in 

[2]-[5]. 

Despite their success, there are some drawbacks of 

these methods, for example, the window effects, the low 

time-frequency resolution in STFT and the cross-term 

interference in WD. STFT is essentially composed of 

piece-wise FFT, which assumes that the signal is locally 

stationary in each segment The segment size is so critical 

to performance as there exist a trade-off between time 

resolution and frequency resolution in accordance with 

uncertainty principle [6]. Choosing a short segment size 

causes poor frequency resolution while a long segment 

size compromises the assumption of stationary data [7]. 
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Although the alternate methods such as WVD yields 

good resolutions in both time and frequency for systems 

with single components, however when applied on multi-

component signals they produce a lot of artifacts [8]. 

Consequently, non-parametric methods are limited by 

applications and hence are not suitable for broad range of 

applications. 

The best frequency resolution for non-stationary signal 

is obtained by using parametric models where the signal 

is fitted into an autoregressive (AR), moving average 

(MA) or an autoregressive moving average (ARMA) 

model. More parsimonious representation of signals and 

higher resolution of time-frequency spectra are 

achievable even for a small length of non-stationary 

signal using these models. Moreover, the parametric 

approaches are able to track relatively fast TV dynamics 

and detect multiple TV spectral peaks which may not be 

achieved by the non-parametric methods [9]. Un-

availability of long data in biomedical applications such 

as EEG, ECG or tumor analysis certainly leads to 

parametric methods as preferred method. [10] 

Time varying Autoregressive (TVARAR) models have 

been investigated by many researchers and received the 

most attention in literatues among theexisting parameteric 

modeling techniques in last few years [11]. This is 

popular assumption for several reasons such as: 1) many 

natural signals has underlying autoregressive structure, 2) 

any non-stationary signal can be modeled as a AR 

process if sufficient model order is selected, 3) estimation 

of AR model parameters involves linear system of 

equations which can be solved efficiently, 4) the 

computational load to calculate the AR model parameters 

tend to be less than that for MA or ARMA models.  

Despite the success of TVAR in varous applications, it 

has few drawback, namely the accuracy of TVAR 

coefficient estimation algorithm and the complexity 

associated with determining the optimum model order. 

Incorrect parametersoften leands to introduction to 

artifacts, spurious spectral peaks, false valleys which will 

lead to unstable system and consequently this method 

will fail. In this paper, methods available to estimate 

TVAR parameters are presented and commented.  

In next section, we present the TVAR model with its 

basic equation. Different TVAR parameter estimation 

methods are presented and their computational aspects 

are addressed. In Section 3, we compare and discuss 

strength and limitation of those algorithms and finally the 

conclusion in Section 5. 

II. TVAR COEFFICIENT ESTIMATION METHODS 

A TVAR process which is driven by a white noise 

sequence can be expressed as: 

][][][][
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j
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               (1) 

where: 

aj[n]; j=1, 2, 3…p are time varying AR coefficients 

𝑝 is the model order 

][n  is zero mean, stationary Gaussian white noise 

To model a signal using TVAR parameters, p 

and  aj[n] is computed. Although p determines the 

accuracy of TVAR, many researchers assumes it is 

known and estimating only aj[n]. 

As TVAR coefficient is now a time varying parameter, 

popular TIVAR methods developed as Levisohn-Durbin 

algorithm or Burg algorithm may not produce desirable 

results.  

Methods for TVAR coefficient estimation can be 

categorized into three classes: adaptive recursive 

estimation methods, deterministic basis function 

expansion method or a hybrid method. Their 

classification is dissipated in Fig. 2. Background of these 

categories is revised and commented further in this 

section. 

 

Figure 2.  Classification TVAR parameter estimation techniques 

A. Adaptive Methods (AM) 

Adaptive TVAR are among the ealiest methods which 

practically useful in many biomedical signal processing 

applications. Many variation of adaptive algorithms were 

studied, but the most popular ones are Least Mean Square 

(LMS), Recursive Least Square (RLS) and Kalman 

Filtering (KF). Details about these algorithm and 

underlying mathematics are available in [9]-[12]. In these 

methods, variation of aj[n] are based on a dynamic model 

which is defined as: 

𝑎𝑗[𝑛] = 𝑎𝑗[𝑛 − 1] + ∆𝑎𝑗[𝑛]                    (2) 

where, aj[n]  are updated from their previous values of 

aj[n-1]. 

∆aj[𝑛] represents an innovation terms which depends on 

type of adaptive algorithm used. For example in LMS, the 

∆aj[𝑛 ] is equal to μ ∙ E{e[n]φ̅(n)  or ∙ e(n) φ̅(n) , 

respectively in which φ̅(n) = [x(n) x(n − 1] ⋯ x(n −
p)]T is a vector of the sampled nonstationary signal.  

If RLS is applied, an additional parameter known as 

forgetting factor is introduced. When RLS compared with 

LMS, LMS offers faster and easy implemention method 

whereby it can be applied with limited knowledge on 

input signals. The RLS which has more complex structure, 

exhibits better performance and fewer iterations. LMS 

and RLS are sufficient for TVAR parameter estimation if 

the non-stationary part of the signal changes slowly and 

not suitable for rapidly changing dynamics [13]. 

Although these methods work reasonably well for slow 

varying signals but they are also sensitive to noise. The 

noice sensitivity may be reduced by increasing the step 
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size or forgetting factor, but the convergence rate will be 

decreased as well and this result in a diminished ability in 

tracking the parameter change. [14] To further enhance 

the stability, these parameters are defined within a range 

determined by largest eigenvalue; which is an assumed 

value. [13]  

B. Modified Adaptive Methods (MAM) 

The Normalized LMS (NLMS), Weighted Size LMS, 

Modified Block LMS, Variable Step Size LMS (VSS-

LMS), Variable Forgeting Factor (VFF), state-based VFF 

and Modified VSS-LMS are among studied algorithms 

which has shown to increase the convergense speed. 

Their mathematics are well presented consicely in. [15] 

Although the modified LMS has shown to increase the 

covergence speed, however, the performance of these 

algorithms is sensitive to the selection of step sizes with 

more coefficients with increase in computation steps. In 

some cases modified LMS algorithms has serious signal 

distortion when applied to biomedical applications. This 

makes the modified adaptive method less studied when 

algorithm for broad application is attempted. 

Modified RLS such as T-RLS, S-RLS methods has 

been a subject of research as well, but its application on 

biomedical signals are less popular as the nature of RLS 

is complex; therefore, their modificaton inherits the those 

complexity as well. Furthermore, they do not not produce 

significantlly better MSE when compared to modified 

LMS.  

C. Basis Function Methods (BFM) 

The BFM is a deterministic parametric modelling 

approach, where the aj[n]  are expanded as a finite 

sequence of pre-determined basis function : 

][][ 
0
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m

i

jij 


                            (3) 

where aji, j=1, 2, ⋯, p , i=0, 1, ⋯m are constants. 𝑚  is 

expanson dimensions and f
i
[n]  is the predefined basis 

function. Therefor, (1) can be re-wriiten as: 
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With an estimation error of  

][][ˆ][ nynyne                               (5) 

To estimate aj[n] from (4), parameters p, 𝑎𝑗𝑖[𝑛] and m 

is to be calculated recursively to reach an optimized value 

which will give minimum error for a selected value of 

𝑓𝑖[𝑛]. Therefore, the process become iterative and long, 

leading to a slow and complex computation with total 

number of (m + 1) x p parameters estimated.  

It is a common practise among researchers to fix the 

orders, p and m to reduce the computation burden [16]. 

Or other approach is to test for different set of p and m 

manually to select the best value, before applying 𝑎𝑗𝑖[𝑛] 

estimation algorithm. 

Among earliest work in determining 𝑎𝑗𝑖[𝑛] is by Hall 

et al with a modified Linear Predictive Coding approach 

[16]. In this approach cos (𝑖𝜔𝑛) and sin (𝑖𝜔𝑛) is selected 

to form the 𝑓𝑖[𝑛] . A generalized correlation function, 

𝑐𝑘𝑙(𝑖, 𝑗) is defined between basis function and data 

sequence. Then (4) is rearranged in matrix of c-terms 

where a least square error technique is used to determine 

𝑎𝑗𝑖 . Coefficients is optimized by minimizing the total 

square error, 𝐸 = ∑ 𝑒2(𝑛)𝑛 . However, method for model 

orders are not studied in this work. Details on this 

algorithm is available at [16], [17]. 

A similar approach was studied by [18] recently in 

2014, adopting a dynamic approach with three major 

changes. First, instead of correlation, a covariance 

relationship were applied. Secondly, basis function is 

formed by two tradional polynomial function namely 

Legendre and Chebyshev instead of the trigonomic 

functions. And lastly, in earlier work, a constant model 

orders for p, m of (2, 2) were used while in the later work, 

the reseacher has adopted a dynamic computation of 

model orders by means of maximizing the likehood 

function, MLE.  

Another classical work was produced by [19], where 

development of a novel Bayesian formulation to 

determine the model order. The model were let to be 

over-modeled and later decomposed using a method 

known as Discrete Karhunen-Loeve Transform (DKLT), 

in order to align the AR coefficients along a direction 

towards greatest energy. Later, smoothed by applying 

SVD to produce a orthoginal basis set of AR coefficients. 

Although large number of coefficients are to be 

determined, the BFM has superior performances over 

AM. Where, it is able to trace a strong non-stationary 

signals, able to detect multiple time-varying peaks in the 

presence of noice, yields more information for spectral 

analysis, improved resolution in both domain, suitable for 

short data and able to detect rapidly varying signals. [3], 

[9], [15], [16], [20]-[23] 

Despite of their success, there are two major 

drawbacks of BFM. Firstly, to select significant basis 

function from the pool of available basis functions. 

Numerous basis functions are projected in literatures such 

as Time Basis functions, Fourier Basis, Walsh and Haar 

functions, Multiwavelet, Discrete Prolate Spheroidal 

Sequences, Chebyshev Polynomial, Legendre Polynomial, 

Diecrete Cosine Functions but however there is no 

specific guideline on selection of appropiate basis 

functions. In fact, a single set of basis function has its 

own unique characteristics can best capture dynamics of 

the system with similar features. Therefore the use of a 

single set of basis function is inadequate for biomedical 

signals as these signals compose of both fast and slow 

varying signals.  

Second issue with BFM approach is the accuracy of 

model orders, p and m. The accuracy of estimated 𝑎𝑗[𝑛] 

is sensitive to the choise of model order. The model order 

determines the amount of memory required to present the 

process. If the model order is inappropiate, the model 

parameters will not characterize the underlying nature of 

process and will not represent the signal. From spectral 

analysis perspective, low model order will produce 

smoothed spectral and a high model order will cause 

supirious spectral peaks. Furthermore, the present model 
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order determination techniques such as Akaike 

Information Criterion, Bayesian approach are designed 

for conventional AR process such unfit for a TVAR 

process. [24] 

D. Modified Basis Function Methods (MBFM) 

MBFM methods were introduced to overcome the 

limitations of BFM which includes dynamic computation 

of model orders or to study on optimized basis functions. 

Optimal Parameter Search Algorithm was proposed in 

[24] where the authors accurately determine the model 

order and extract the significant model terms by 

discriminating irrelevant basis sequence. It has been 

shown that this method works well for overparametrized, 

corrupted signals and is also applicable for linear and 

non-linear system. Then irrelvant basis sequence where 

removed pool of candidate vectors and a liner 

independent matrix were formed before least square 

method is applied. A projecton distance is calculated to 

compute model orders p and m. Although this proved 

better performances, but more parameters were 

introduced and it becomes increasingly complex at each 

level of n. The same methods were studied again using 

multiple set of basis function [12] with similar success 

but again with huge number of coeffiecients and 

intermediate parameters were used.  
Accuracy of model order may also increased is by 

adopting forward and backward (FB) TVAR. A system 

with such approach is flexible and has superior 

performance over the model using only causal (forward) 

TVAR as in (1). An anti-causal or backward TVAR is 

defined as: 

][][][ˆ
1

jnynbny
p

j

j

b  


                     (6) 

A quick look on the forward and backward equations 

may suggest the 𝑏𝑗[𝑛] and 𝑎𝑗[𝑛]  need to be computed 

independently, and thus computation time will be 

doubled. But, as the matter of fact, it is not, as 𝑏𝑗 ≅ 𝑎𝑗
∗ is 

assumed. 

[25] proposed a FB TVAR scheme with a time delay. 

With 𝑎𝑗[𝑛]  and 𝑏𝑗[𝑛]  is computed using methods 

proposed by [16] and consequently a modified MSE used 

as optimization criteria. In this method, a double 

computation for the symmetric matric, C is unavoidable. 

These method were shown effective in In a noisy 

enviroment and high model order While, [18] proposed a 

Modified Covariance Method to form a Blok Matrix, C 

and applied Wax-Kailath Algorithm to solve for 𝐶𝑎 =
−𝑑 and hence the algorithm becomes more complex by 

computing model order dynamically. 

E. 

A HM were proposed by [26] where TVAR process is 

approached with a novel multi-wavelet decomposition 

scheme consisting sum of multiple set of wavelets family. 

By this definition the TVAR is now reduced to regression 

selection problem. Parameters are then resolved by using 

Forward Orthogonal Regression Algorithm. 

Different HM proposed by [27] and [28] where basis 

function defined by multi wavelet decomposition and 

modified block LMS were employed to estimate 𝑎𝑗[𝑛]. 

Different signals consisting fast and slow changing 

dynamics, solves the inherit limitation of LMS. [29] used 

the multi wavelet expansion to represent TVAR and a 

normalized LMS to estimate the parameters; and 

produces similar conculsion to previous research.  

Therefore the adaptive method when used with a 

multi-wavelet basis function expansion has proven to 

overcome their inheritant limitations. However this 

approaches involves a great number of candidate model 

terms and increases the computation time. If dynamic 

computation of model order is employed, the 

computation becomes much heavier as this approaches 

are in direct form. 

III. DISCUSSION AND RECOMMENDATION 

In recent past, new research field in Medical 

Informatics have emerged while current technologies 

were updated in short span of time. Design and 

development of medical instruments are becoming 

increasingly complex to meet the needs of human 

endeavors, and such the data formats become more 

complex. This leads to demand for more sophisticated 

biomedical signal processing algorithms which can be 

implemented in broad range of applications.  

As the traditional methods no longer meet the demands 

of current technology the time variant methods of signal 

analysis are increasingly becoming the preferred method 

for processing of biomedical signals. Among the various 

TFR methods, parametric method characterized by AR 

transfer function is studied well by researcher as the 

TVAR provides more details on spectrum data in 

comparison with non-parametric techniques. However, 

the success of TVAR is determined by the accuracy of 

model orders (p, m) and algorithm to estimate the TV 

coefficients.  

Available TVAR coefficient computing algorithms 

falls in two broad categories. Details of these algorithms 

have been discussed in Section 2.0. Their strengths and 

limitations are further summarized in Table I. Table I is 

not representation of a performance analysis on these 

methods, but rather comparison of their strength and 

limitation. In each of these categories, different 

algorithms have been researched and shown to working 

well in their scope of application. 

From Table I, we could conclude that the TVAR 

model identification via BFM has shown advantages and 

better performances over AM. It is reliable in detecting 

signals with multi-dynamics and with multiple peaks as 

well. However, the selection of model orders, expansion 

dimensions and type of basis function is of concern since 

there is no fundamental theorem on how to choose them. 

Furthermore, implementation of BFM and MBFM is 

currently via direct approach where optimization is 

reached by performing recursive and iterative 

computations as per the mathematic model. Although the 

results were promising; however they are 

computationally expensive with huge number of 

coefficients to be defined. 
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TABLE I.  COMPARISON OF TVAR PARAMETER ESTIMATION 

ALGORITHMS 

Categories Strength Limitations 

Adaptive 
Algorithm 

 Easy Implementation, 

 Low Cost 

 Detect slow changing 
dynamics only 

 Limited by 
uncertainty principle 

Modified 
Adaptive 

Algorithm 

 Detects variety of 
signals 

 Complex 
implementation 

 High Computation 

 Slow Convergence 

Rate 

 Application 

dependent 

 Iterative and 
recursive 

 Large number of 
coefficients 

Basis 
Function 

Algorithm 

 Detects variety of 
signal  

 Higher resolution in 
both time domain and 

frequency domain 

 Not subjected to 

uncertainty principle 

 Model order 
dependent 

 Basis Function 
dependent 

 High number of 
coefficients 

 High Computation 

 Recursive and 

Iterative 

Modified 

Basis 

Function 
Algorithm 

 Broader Applications 

 Detects variety of 
Signals 

 Higher resolution in 
both time domain and 

frequency domain 

  Not subjected to 
uncertainty principle 

 Noise reduction in 
noisy signal 

 Adjustment of over 
parameterized model 

order 

 Model Order 

dependent 

 High number of 
coefficients 

High 

 Computation 

Recursive and 
Iterative 

Hybrid 

Techniques 
 Inherits advantages of 

basis function and 
modified adaptive 

methods 

 High number of 

coefficients 

 Recursive and 

Iterative 

 High computation 

 

From the categories of algorithms shown in Table I, 

Modified Basis Function (MBF) should be considered for 

further improvement. Under MBF two schemes have 

been proposed where first, a combination of different set 

of basis function and second one is a forward-backward 

TVAR. Combination of basis function addresses the 

question of which basis function should be employed to 

detect different types of signals. Combining few basis 

functions also could trace changing sharp dynamics in 

analyzed signal. As such further studies should consider 

this fact. Adopting forward-backward TVAR will reduce 

over fitted model orders and to filter noise as well.  

Recursive computation of BFM can be reduced by 

employing intelligent Artificial Neural Network (ANN). 

The superior performance of ANN has been studied 

demonstrated on AR model identification of stationary 

signals [30]. The use of Genetic Algorithm is used 

accurately determine the model order in non-stationary 

cases as well. As such this combination can be extended 

into non-stationary signals as well.  

However to our knowledge in non-stationary 

biomedical signals analysis, no work has been done to 

exploit the superior performance of GA and ANN. 

Therefore an intelligent BFM algorithm based on GA and 

ANN is highly recommended as the way forward to 

further enhance the performance and to reduce the 

computation complex in current BFM methods.  

IV. CONCLUSIONS 

As a conclusion, we had reviewed TVAR parameter 

estimation methods in relation to biomedical signals. 

Their strengths and limitations are summarized in Table I. 

BFM has been identified as promising approach; however 

it has recursive computation which increases the number 

of parameters to be estimated before optimized 

parameters are obtained. To further enhance the 

performance of BFM, it is proposed to employ ANN and 

GA algorithm into BFM, which will precisely estimate 

the parameters with reduced computation time. BFM 

adopting both ANN and GA for biomedical signals is yet 

to be explored. Multiple basis function will further 

improve the algorithm to trace multiple dynamics of non-

stationary data. It is our hope that our work will provide 

some useful insights and perspective for future work on 

time-varying signal representations. 
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