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ABSTRACT KEYWORDS

This review describes recent developments and applications of near- Arthroscopic surgery;
infrared (NIR) spectroscopy for characterization of articular cartilage articular cartilage;
integrity. It summarizes the research findings in this area and presents multivariate analyses; near-
some spectral ranges and peaks associated with the different  Infrared spectroscopy;
properties and components of articular cartilage. We further describe osteoarthritis

recent adaptations of NIR spectroscopy for clinical evaluation of

articular cartilage injury and degeneration. Critical to accurate

decision-making during repair surgery is having clear knowledge of

lesion severity and spread, and how to grade the quality of

surrounding cartilage. Thus, in this review, we detail efforts aimed at

quantification and classification of cartilage pathology using NIR

spectroscopy. Finally, we present open questions and challenges with

a view to guiding future directions in NIR spectroscopy research on

articular cartilage.

Introduction

Articular cartilage is a specialized connective tissue covering the ends of diarthrodial joints,
enabling friction-free movement of articulating joints, as well as transmitting physiological
loads to the underlying bone. This tissue is avascular (no blood supply) and aneural (no
nerve endings) (1), thus its capacity to heal after injury is limited (2). It is composed of a
solid extra-cellular matrix (ECM) (3), consisting of collagen fibril network (10-15%) (4),
which forms the framework of the tissue, and ground substance rich in proteoglycans (PG)
(5-10%) (5), surrounded by water and mobile ions (60-80%) (6). Structurally, articular carti-
lage possesses a depth-wise layered architecture, where the composition and structure,
collagen fibre orientation, amount of PG, and ion concentration of the tissue depend on the
layers (7).

Alteration of the composition and/or structure of articular cartilage, either as a result of
injury or aging, often results in degeneration of the tissue and in some cases progression to

CONTACT Ismail Adewale Olumegbon @ ismail.olumegbon@elizadeuniversity.edu.ng @ Department of Physical and
Chemical Science, Elizade University, P.M.B. 002, llara-Mokin, Ondo State, Nigeria.

Color versions of one or more figures in this article are available online at www.tandfonline.com/laps.

© 2016 Taylor & Francis Group, LLC


http://www.tandfonline.com/laps
http://dx.doi.org/10.1080/05704928.2016.1250010

2 (& 1A OLUMEGBON ETAL.

osteoarthritis (OA), which is the major disease of articular cartilage. Although the pathogen-
esis of OA is not well understood, its onset is often characterized by biochemical, bio-
mechanical, and morphological changes in articular cartilage (8-10). These changes involve
breakdown of cartilage ECM, with associated increase in the tissue water content, resulting
in alteration and imbalance of the ECM components (6, 10-16). Thus, clinical assessment of
early-stage cartilage pathology is essential in preventing progressive degeneration and devel-
opment of OA.

Clinical diagnosis of cartilage pathology is often performed by clinical examination
and radiography (17-20), in some cases magnetic resonance imaging (MRI) (21-25)
may be conducted. Conventional radiography provides indirect diagnosis of OA via
joint-space narrowing, and is only sensitive to late or advanced stages of OA (26).
MRI’s multiplanar capability and superior tissue contrast make it an ideal modality for
clinical assessment of cartilage injury and degeneration. Nevertheless, the poor resolu-
tion and lack of availability of clinical MRI pose a limitation on the use of this modal-
ity for cartilage assessment (27, 28). More so, extraction of tissue biopsies (29-31) from
affected joint is unsuitable as it cannot provide real-time assessment during arthro-
scopic surgery, and it exposes the joint to further degeneration. For confirmation of
diagnosis and surgical repair of cartilage injuries and degeneration, arthroscopy is per-
formed. Although minimally invasive and enables access to the joint space for visual
examination of the cartilage surface, arthroscopy is a visually subjective and has poor
inter- and intra-observer reliability (32-38).

To address these limitations of conventional and existing diagnostic methods, several
non-destructive techniques that can provide objective and quantitative evaluation of articu-
lar cartilage integrity in real-time, and potentially enhance the outcome of conventional
arthroscopy have been proposed and are currently being researched. The proposed non-
destructive techniques include NIR spectroscopy (39, 40), Raman spectroscopy (41, 42),
optical coherence tomography (OCT) (43-46), Fourier transform infrared spectroscopy
(FTIR) (12, 47-53), and high-frequency ultrasound (54-56), with near-infrared (NIR) spec-
troscopy being one of the most promising of these techniques.

NIR spectroscopy was discovered in 1800 by F.W. Herschel (57), and was first applied
in agricultural research (58), where significant development of the techniques was under-
taken. In recent years, NIR has been adapted for various applications in biomedical engi-
neering, including analysis of the composition of oxy-haemoglobin (59, 60), lipids (61),
water (62), and proteins (63, 64) in body tissues, blood, and urine. In addition, normal
and cancerous breast (65) and prostate (66) tissues can be differentiated using this tech-
nique. Furthermore, measurement of blood glucose level has also been demonstrated using
NIR (67-69). Although NIR spectroscopy has been employed in the study of synovial fluid
for diagnosis of arthritis (70), its application for evaluation and characterization of articu-
lar cartilage integrity is fairly recent. It enables non-destructive spectroscopic probing of
cartilage matrix in order monitor changes in the tissue and provides insight into the struc-
ture—function relationship in early OA, as well as assist decision making during arthro-
scopic surgery. This review focuses on the application of NIR spectroscopy for
characterization of articular cartilage properties, with particular emphasis on the specific
spectral regions employed by researchers for characterizing the different properties and
function of articular cartilage.
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Fundamentals of NIR spectroscopy

NIR spectroscopy is a vibrational spectroscopic technique, between the spectral range
800 nm and 2,500 nm (71, 72), that produces complex absorption peaks resulting from over-
tones of fundamental absorption peaks in the infrared spectral range (2,500-20,000 nm)
(73). Absorption in the NIR spectral range originates from overtones and combinations of
stretching and bending vibrations of O—H, C—H, N—H, and S—H bonds (74, 75), which
are the major molecular bonds in organic materials. The peaks in NIR spectroscopy tend to
be broad and overlapping; thus, this technique is non-specific and relies on chemometrics
and multivariate analyses to extract hidden/latent information from the spectra of materials.
NIR spectroscopy is based on the ability of materials to absorb and scatter NIR light at dif-
ferent wavelengths.

The behavior of molecules under NIR excitation can be modeled by an anharmonic oscil-
lator with energy of vibration given by

Evp=hv[l — 2v+Av+1)y], (1)

where E,;, is the vibrational energy, h is the Planck constant, v is the frequency of vibration,
Av is the vibrational energy states (Av = £2, 3...), and y is the anharmonic factor.

This anharmonicity introduces overtones (integral multiples of fundamental absorption
frequencies) and combination bands into the energy system. These overtone and combina-
tion bands are peculiar to NIR and are 10-100 times weaker relative to the fundamental fre-
quencies in the IR spectral region (76). The peaks in NIR originate from the X-H stretching
and bending modes (X=S, N, O, C), which is the bonding of hydrogen to other light atoms.
The matrix components of articular cartilage (collagen and PGs) are mainly composed of
macromolecules-containing bonds that are sensitive to NIR probing (CH, OH, NH, SH).
This makes NIR spectroscopy a suitable optical technique for probing molecular, micro-,
and macroscopic changes in articular cartilage.

Unlike other optical techniques, viz. Raman spectroscopy, OCT, and FTIR spectroscopy,
NIR is an ideal optical spectroscopic tool of choice for probing of articular cartilage integrity
because of its relatively high penetration depth into organic materials (77-80), which
depends on the spectral wavelength, sample features, and NIR light intensity. The ability of
NIR light to penetrate deep into biological tissues, up to about 8.5 mm into neonatal head
(80), is an inherent advantage it possess over other spectroscopic techniques, especially in
probing full-thickness cartilage, and potentially subchondral bone properties (81) (articular
cartilage thickness in the human joint ranges from 1 mm to 4 mm). In addition, the tech-
nique requires no sample preparation, making it ideal for in vivo assessment of cartilage
integrity.

Trend of NIR research on articular cartilage

Research into application of NIR spectroscopy for evaluation of cartilage integrity is as
recent as a decade, when Spahn et al. demonstrated NIR spectroscopy as a potential
method for arthroscopic evaluation of low-grade degenerated cartilage lesions (40).
Table 1 highlights, in chronological order, the literature on the capacity and application



‘(L000" > d
‘%r0'99 > 4 > %9'59) SS41S (L000" > d ‘%T0'E6 = L) SSAUPIYL

abe|iued pue esdads uondiosge SYIN USIMISQ UONR[RLI0d JuedYlublS 3 005'21L-000"% (S1 = N) ejj23ed auinog (L6) €107 “le @ eIy G
*abe|11ed Jendiue Jo d1IsUdIRIRYD AI9A0D3I/|RIIURYISWOI] pUR 005'Z1-005'Z pue
elep [eapads usamidqg (L000" > d ‘%68'S6 = ,¥) uonea.Iod Juedylubls 3 001'9-00£'S Jo uoneuiquio) (€1 = N) e|i23ed suinog (6£) €107 "l 12 RIRYY ¥L
'ssauydIY3 abe|11ed Jejndjlie pue eipads uopdiosae
YIN U2aM13q (LO00" > d ‘%68'€6 = ,4) Uole|aod Jeaul| YbiH 3 058'8-05€'S (L6 = N 'SL = N) e||21ed duinog (6€) €107 “le12 RURYY €1
*2402s [2160]03SIY UDjUB| UO paseq uoldnJlsap abejied jo apeib (9 =N)
pue uondiosqe SYIN UsamIaq (L000" > d ‘%6856 = L) UonePLo) 3 9EV'TL-£96'6 S}el Ul S|opow YO JUSI94Ip 991y (v£) TIOZ "l 19 RUBYY T
"abe|1pied anieIaUabap 1oy daiebau pue abejiued 1oeul Joy SPNIISU0d abejined
annsod si (wu €G¢'L) wnwixew uondiosge e uondiosqe jo sbueyp ay] 3 975'0L-1909 paJa3uIbuad aNSSI} 3344-P|OedS (06) ZTLOZ “|e 39 uuewyoH ||
*(UOIPRY3I 9BHNS 10) §°0 1) S4d3oWeled UOIIYAI punosesyn (0L = N) Sopetb-SYD| 1P
9y} yum d1e[a.110D sid1dweled SYIN-HA dYL (S0 < 4) sia1owesed ul suoisa| abejinied pue ‘(0L = N)
[B2IURYDIW BY} YUM S9)E[3110D JUSIDY0D UOND3YSI punosenn ayl 3 005'7L-000'% abejied jewou ‘ejja1ed auinog (68) TLOTZ “|e 12 umoig 0l
saubins
*(08°0 = ¥) uoibas usalb ay3 10} pue (98°0 = Y) juawade|dal aauy bujobispun
uolf31 paJ 0} UOIIEZI[BLUIOU SO JUSDLYJ0D UONR[DLI0D YBIY SMOYs SHIN 3 000'0S-1606 syuaned woyy (6 = N) s3jdwes (88) LLOZ “|e 12 Uossueyor 6
(0220 = ¥) Dd J0 JUSIU0D PDNP3L 10 (0LY'0 = ¥) (0L = N) sapeib-SY| JudI1P
£B0j03s1y abejinied pue USWSINSEIW-SY|N USIMIS] UOIIR[21I0D ul suoisa| abejinied pue ‘(0L = N)
1004 *(%S6 AdeIndde) suoisa| abe|ilied [ewlou UsaMIaq uoipdunsigq 3 000°LL-0SZ'¥ 9be|ied jewiou ‘ejj93ed auinog (/8) L10Z “|e 1@ umolg 8
"(G€5°0 = ¥) SNINPO S,6UNOA pue (£97'0 = Y) (sbnyd sa38Welp ww ‘007 = N)
apeib sy)| pue uondiosge-SY|N U9IMIS] UOIIR[21I0D JuRdylubls ) 160'6-788'S suawiads auog-abejiied uewny (98) 01L0Z “|e 32 pP1uey  /
"(1000" > d'6/°0 = ) JUAU0D O pue ‘(L000" > d '€6'0 = ¥) JUSMU0D (sployJeds |-uabej|oD)
uabe||0d abejied pue uondiosge-SYIN USaMISq uolie[a.i0d uedylubls 3 00¥'S—008'€S S1onJ1suU0d abe|iied pasasuibug (8) 0L0OZ “|e 13 |eAeg 9
TL°0 pue 890 Usamiaq
pabuel JusIPYJ20D UO11R|D110 Ul S,uewIeadS 9Y] "SYIN YUM punoy 1eak e jjey Joy Bunse)
249M AJuo $31035-gNS SOOY 994U} YIM SUONRRAI0D (£00" < d) Juedyiubls > 969'8-08/'9 uted 99Uy Yum (LZ = N) Siudled (#8) 0LOZ “|e 39 UUBWJOH §
'9€0°0 F $88°0 =¥ suonesado aauy didodsolyie
40 SI9AIDSCO 3Y) UIYNM UONR[31I0D (L00" > d) Juedyubis e smoys SHIN -+ D LLLLL-T88'S buiobiapun (51 = N) sjualied (€8) 0107 “[e 33 uyeds ¢
K ‘(uonsabip uonsabip uisdAi) Aq Ayredoipuoyd
.Aln J13yje suawpPads ulyum uondiosae-SY|N Jo aseanap uedyubls 3 005'21-000'% |eauawnadx3 (9 = ) e|21ed auinog (28) 6007 “|e 3@ UMOIg €
[ (569°0 = ) 1919weled v aioys
nNu BIA SSUYJIIS PAdNPaI PUB “(509°0 = ¥) 2400S upjueyy [ed160jolsly
o ‘(708'0 = ) Ju91U0D Ja1em pue uondiosge SYN U9IMISG UonePUo) 3 160'6-88'S (T2 = N) s9auy daays (¢4) 800T “|e 39 uyeds ¢
W ‘(AlaAdadsal ‘020 pue £5°0) 14N UeY3 (86°0) Syjuow ¢ 43N0 Joj ujed
M Aoeindde pue (96°0) Adynads Jaybiy (000" = d) Apuedyiubis e sey YN+ D 160'6-788'S 99uy Wy buudyns (z| = N) siusned (0%) £00Z “|e 1@ uyeds |
< S}nsay Apms (,_wo) KBojopoyaw (s)loyany N/S

joadA] J1squinuanem ‘uoibal |esydads pue uawads

"abe|14ed Jejndiye Jo uonen|eas 1oy Adodsoi1dads YiN Jo uonedijdde ay3 Jo malA3L 21njeIdY| [e2160joU0IYD pue d1IeWRISAS i *L djqel



APPLIED SPECTROSCOPY REVIEWS (&) 5

‘WU 008-005'7 = ,_W2 005'TL-000"y :PRI3PISU0 3ie UoIB3I JaquINUaABM PAULYSP DN Y3 UIYyiMm elep [endads pasn aney eyl saipnis AluQ

‘|l = ) ‘ewuawpadxe = 3 :2dA1 Apnis :sajoN

"(L000" > d ‘%SE'86 = ,4) PUNOQaI dise|d
pue eJpads co_aa‘_omnm SYIN U99Mlaq uol1e[a140d Jeaul| ucwuc_cm_m
.:.ooo. >d %8’ Ly = Ntv sninpow snoauejuelsul
pue ‘(L000" > d ‘%6'89 = ,4) sninpow diweukq ‘(1000 > d
'%8'L9 = &) Sninpow wnuqyinbad ‘(1000" > d ‘%E0L = ,4)
ssauydIy} abeji1ied pue elep [ei1dads usam1aqg UOIIR|a1I0D JuedubIs
‘SoNn|eA |enoe JO 99
IM U368||0)/Dd JO SaNjeA PaUIWIRIBP-YIN dY3 paldipaid eidads YN
(500" = d 'p80 = Y) JuU0D
uabej|od pue (£00" = d ‘780 = ¥) JUSIU0D Dd ‘(€0° = d ‘890 = ¥)
1U)UOD JIJeM pue elep |eidads UaMII] UOIIR[410d Juedyiubig
-9buey jesads ,—W> 000'6-000"Z dY) Ul WW G~ pue
‘abues | _wd 000'2-001’S 3Y3 ul ww g~ ‘dbues ,_wd 001’5000y
9} Ul WW 7 0} WW |~ wouy patieA uonelauad jo yidap ayl
"(L000" > d'%6'LL > 4 > %0°59) saradod [edibojolsiy
pue ‘(L000" > d '%0'8L > ;4 > %¢ELL) sa1uadoud [ediwaydolq
(1000" > d‘%0°TL > M > %8'09) seiadod [edtueydawolq
pue eidads uondiosqge Y|N U9aMISq UOLIR[110D JuedYIubIS
-abe|ied
Jejnd1e ul Jus0d D4 Jo buiddew [eneds pue uajuod Dy pue eep
|ea323ds YN usamiaq (L000" > d ‘%0v' L6 = 24) uoneRLIod juedyubIs
“(L000" > d '%6€96 = ,4) 910s buluteys pue ‘(Lpo0" > d
'%€0'88 = ) AWIRIN|I91 ‘(L000" > d ‘%8L¥6 = 4) Ambajul
[eANdNIIS pue e1)dads uondiosge SYIN USIMISQ UOIR[S4I0D Juedyiubis

“(MP/M %8 dISWY PUE ‘G6'0 = L) JUSIU0D (4) eyd|ns
u0JIpUOYd pue udbe||0d PUR SY|N US3MIS] UOIIR[3410d JuedLIubIS

"(¥9°0 = ,¥) dpeib upjuep payIpow (L9'0 = ) ssauxdIyy abeiie)
pue eJpads uondiosge SYIN U3MISQ UOIIR|SI0D Jeaul| JuedYIubIS

21035 [@2160[03S1Y YUM (50" > d 'Z8L°0— = Y '6L£'0— = ¥)
UOI1[31103 MO| SMOYS JUSWIINSEIW SYIN ‘B3Je [e13Udd dY3 U]

"aNSSH A} JO (960 PUL 60 = §) WO0D

191eMm Juad1ad YuMm pue (980 Pue /8’0 = Y) JUSIUOD J31eM 33N|0Sqe
3Y} YuMm Aieaul| 91e[2110d spueq adueqlosge Yiog Jo seale pajesbaju|

"33y dAIIRIUSBAP 10y /7| € pue
‘93U dl}eWNEI} 10} PAUIRICO SEM G|/ JO anjeA uondiosge YIN ueaw ay |

000'7-005'CL

8/L'LT-000

000'9-000'%

000°0L—-000t

000°0L—-000"t

60€'0L—-160'6
687'TL-656'6 pue
075'9-0vF'S JO uoneuIquo)
9EY'T1-L96'6 pue
‘005°0L—-00S"Z *€LL'9-9¥¥'S
:9buel |esdads paulquio)

000'5-000'%
000'CL—-000

LLL'L1-788'S

068'9-00C'S

LLL'L1-788'S

(zlL = N) 9e|j31ed uinog

(% = N) swiof suinbg
SINOUS |eSeu pue syujof 9auy dulrog

(syurof auinoq)
S1PNJIsU0d abe|iued pasasuibug

(§ = N) suof d3uy| suinog

(0s=nN
‘€L = N) S93UY J2ABPED UBWINH

(0T =N '9 = N) e||33ed duirog

(9¢ =N)
S}l Ul S|PPOW O JUIIPIP 1YL
synous pue syuiof
9auy aulnoq pue ‘1apmod ajejns
unloIpuoyd paALIdp abejied
auIn0q ‘usbe||od || 9dA) suinog
(tz = N) sneajed jeiqn
uewny woJy abe|iued pue auoq aulnog
(oL=n)
s9|dwies |eipuoy033so sbid aunjelurpy

AN = Zv mmm__tmu |eseu sulnog
9=nN)
93Uy dljewnel) SNSIdA (9 = J)
99Uy dARISUIBIP YUM Sjudlied

(€0L) 9L0T “[e 19 eIRYY

(zol) 910T “[e 33 unes

(L0L) 90LT “|e 30 nunyinjed

(001) 9LOT “[e 19 ULBAODD

(66) SLOT “[e 13 Jexjeped

(¥¥) SLOT “[e 32 elRyy

(86) ¥10T “[e 33 elRyy

(£6) ¥10T “[e 12 BlRYY

(96) 10T “[e 32 nunynjed

(S6) ¥LOT “|e 33 ULSAODDN

(¥6) ¥L0T “|e 39 Jay3uan

(€6) €10T " 13 Jexjeped

(z6) £10T “[e 33 uyeds

8¢

A4

9

14

144

€C

[44

X4

0¢

6l

8L

Ll

9L



6 I. A. OLUMEGBON ET AL.

of NIR for characterization of articular cartilage injury, defects, and integrity in both
human and animal joints.

NIR spectroscopic characterization of articular cartilage properties

Due to the capacity of NIR spectroscopy to monitor key chemical (104, 105), physical
(106, 107), and functional (108) properties of biological materials, the technique has been
adopted for assessing changes in the functional, biochemical, and structural properties of
articular cartilage. Highlighted below are studies that have demonstrated the capability of
NIR spectroscopy for assessment of the functional (Table 2), biochemical (Table 3), and
structural (Table 4) properties of articular cartilage.

Peak assignments of articular cartilage NIR spectra

The ability of NIR spectroscopy to track important physio-chemical and morphological changes
in organic materials makes it a suitable technique for monitoring biochemical changes in articu-
lar cartilage, which has been shown to be related to its biomechanical and functional properties
due to the structure-function relationship of the tissue. Hence, the NIR spectrum of articular
cartilage incorporates latent information on its physical, morphological, and functional proper-
ties. Thus, accurate peak definitions, which are associated with the biochemical composition of
articular cartilage, can have significant influence on the reliability of spectral interpretation and
analyses with regards to characterization of the tissue properties. This review presents a list of
common spectral regions in the NIR spectra of osteochondral tissue (Figure 1), and the associ-
ated molecular assignment related to the matrix components of the tissue (Table 5).

Table 2. Systematic review of the application of NIR spectroscopy for evaluation of articular cartilage func-
tional properties.

Spectral region,

wavenumber
S/N Author(s) (ecm™) Specimen Functional property  NIR correlation
1 Spahn et al., 2008 (72) 5,882-9,091 Ovine medial femoral Mechanical stiffness R=0.877
condyle (N = 22)
2 Marticke et al,, 2010 (86)  5,882-9,091 Human knee (N = 200) Young modulus p = 0.535
3 Afara et al., 2013 (79) 12,500-7500, Bovine patellae (N =13)  Osmotic reswelling R? = 95.89%
6100-5700
4 Afara et al., 2013 (91) 4000-12500 Bovine patellae (N =15)  Stress 65.46% < R?
< 66.04%
5 Afara et al., 2015 (44) 9,091-10,309 Human cadaver knees Dynamic modulus R? = 72.0%
(N=13,N=50)
6 Afara et al., 2015 (44) 9,091-10,309 Human cadaver knees Equilibrium modulus ~ R* = 60.8%
(N=13,N=50)
7 Afara et al., 2016 (103) 5,450-6,100, Bovine patellae (N =12) Elastic rebound R? = 98.35%
7,500-12,500
8 Brown et al., 2012 (89) 4,000-12,500 Bovine patella, normal Structural electric R=0.55
cartilage (N = 10), and parameter (SEP)
cartilage lesions in
different ICRS-grades
(N=10)
9 Sarin et al., 2016 (102) 9,524-14,286 Equine joints (N = 44) Equilibrium modulus ~ R? = 67.8%
10 Sarin et al.,, 2016 (102) 9,524-14,286 Equine joints (N = 44) Dynamic modulus R?> = 68.9%
11 Sarin et al., 2016 (102) 9,524-14,286 Equine joints (N = 44) Instantaneous R* = 41.8%

modulus
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Table 3. Systematic review of the application of NIR spectroscopy for evaluation of articular cartilage bio-
chemical properties.

Spectral region,

wavenumber Biochemical NIR
S/IN Author(s) (cm™) Specimen property correlation
1 Afara et al., 2015 (44) 9,091-10,309 Human cadaver knees  Water content R? = 65.0%
(N=13,N=50)
2 Afara et al., 2015 (44) 9,091-10,309 Human cadaver knees  Uronic acid R*=77.9%
(N=13, N =50) (indicative of PG
content)
3 Spahn et al., 2008 (72) 5,882-9,091 Ovine medial femoral ~ Water content R =0.845
condyle (N = 22)
4 Padalkar et al., 2013 (93) 5200-6890 Bovine nasal cartilage ~ Water content R=0.87
(N=2)
5  McGoverin et al., 2016 (100) 4,000-10,000 Engineered cartilage ~ Water content R=0.68
constructs (bovine
joints)
6  McGoverin et al., 2016 (100) 4,000-10,000 Engineered cartilage PG content R=0.82
constructs
(bovinejoints)
7 McGoverin et al., 2016 (100) 4,000-10,000 Engineered cartilage  Collagen content R=0.84
constructs (bovine
joints)
8  Palukuru et al., 2106 (101) 4,000-6,000 Bovine knee joints and PG/Collagen content ~ RMSEP = 6%

nasal snouts

Table 4. Systematic review of the application of NIR spectroscopy for evaluation of articular cartilage
structural (histological and thickness) properties.

Spectral region,

wavenumber

S/N Authors(s) (ecm™) Specimen Structural property NIR correlation

1 Afara et al., 2015 (44) 9,091-10,309  Human cadaver knees Mankin score R*=773%
(N=13,N=50)

2 Afara et al., 2015 (44) 9,091-10,309  Human cadaver knees Thickness R?>=78%
(N=13,N=50)

3 Spahn et al., 2008 (72) 5,882-9,091 Ovine medial femoral Mankin score R = 0.896
condyle (N = 22)

4 Afaraetal, 2013 (39) 5,350-8,850  Bovine patella (N =15)  Thickness R*=93.1%

5 McGoverin et al,, 2014 (95)  7,280-6,040 and Bovine bone and Thickness R*=75%

8,820-8,060 cartilage, human tibial R=10.61

plateaus (N = 22)

6 McGoverin et al,, 2014 (95)  7,460-6,780 and Bovine bone and Modified Mankin R?> = 84%

8,695-8,197 cartilage, human tibial ~ score R=06

plateaus (N = 22)

7 Guenther et al., 2014 (94) 5882-11,111  Miniature pigs Wakitani score R=-0379
osteochondral
samples (N = 10)

8 Guenther et al., 2014 (94) 5,882-11,111 Miniature pigs Pineda score R=-0.182
osteochondral
samples (N = 10)

9 Afara et al., 2012 (74) 12,436-9,967  OA models in rats Mankin score R? = 88.85%
(N =36)

10 Afara et al,, 2014 (97) 6,113-5,446 OA models in rats Mankin score component: R?* = 94.78%
(N=36) Structural integrity

11 Afaraetal, 2014 (97) 10,500-7500  OA models in rats Mankin score component: R*> = 88.03%
(N =36) Cellularity

12 Afaraetal, 2014 (97) 12,436-9,967  OA models in rats Mankin score component: R = 96.39%
(N =36) Safain-O-staining

13 Sarinetal, 2016 (102) 9,524-14,286  Equine joints (N = 44) Thickness R?>=70.3%
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Figure 1. Typical NIR spectra of rat articular cartilage indicating specific absorption peaks (A-F) and spec-
tral regions (G-J) associated with the matrix components and properties of articular cartilage.

Characterization of articular cartilage integrity: Quantifying injury and
degeneration

In addition to analysis for determination of the micro- and macroscopic properties of articu-
lar cartilage using NIR spectroscopy, the method has also been proposed and applied for the
quantification of cartilage injury, and a potential means of scoring cartilage injuries in real-
time during joint surgery. Currently, cartilage injuries (lesions) are scored arthroscopically
according to the International Cartilage Repair Society (ICRS) scoring system (109), which
is based on the relative depth of the injury. However, this method has been shown to be
poorly reproducible and repeatable (32, 110, 111) due to user subjectivity. Thus, NIR spec-
troscopy has been proposed as a potential method for objective scoring of cartilage defect. In
this review, we highlight quantitative scoring parameters that have been defined based on
cartilage NIR spectrum.

Primary assessment
Function score

This function employs differences in absorbance peaks to generate a score with the aim of
differentiating between normal and degenerated cartilage. The function score is of the form
X= Z;z 'C.A;;, where x is a scaled outcome between 0 and 1, with 1 representing normal
tissue and 0 degenerated tissue. C; is the coefficient assigned to the wavenumber of interest
and A,; is the absorbance measured at each wavenumber of interest. The score has proven
to have successfully quantify degeneration in articular cartilage (89, 112).

Water-amide ratio

This parameter, introduced by Spahn et al. (40), is the ratio (AR) of the magnitude of the
absorbance peaks of amide-water band (first OH and CH combination overtones) to the
amide band (second CH overtones), and quantifies the water content in cartilage (40, 72,
89). The parameter is based on the understanding that degeneration results in increase water
content in cartilage. The ratio is calculated as
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Table 5. NIR spectral peaks (A-F) and regions (G-J) identified with the matrix components of articular car-
tilage, together with the associated peak assignments. Spectral regions without text identification consist
of a combination of multiple spectral regions in Figure 1.

Spectral region,

S/N Author(s) wavenumber (cm™") Assignment Tissue component
1 Afara et al., 2013 (79) 5,623 (C) Not specified PGs + water
2 Afara et al., 2013 (79), 6,667-7,142 Water saturation Excluded from analysis
Afara et al., 2012 (74)
3 Afaraetal, 2013 (79) 7,500-12,500 Polymer-type chain network PGs + collagen
4 Afaraetal, 2013 (39) 7,200-8,850 (1) 2nd CH overtones Collagen
5 Afara et al., 2013 (39) 5,300-8,850 1st and 2nd CH and OH overtones PGs + collagen + water
6  Afaraetal, 2013 (79) 5,700-6,100 1st CH and SH overtones PGs
8 McGoverin et al., 2016 (100) 4310 Not specified PGs
9  McGoverin et al., 2016 (100), 5,200 (B) Not specified Bound + free water
Padalkar et al., 2013 (93),
McGoverin et al., 2014 (95)
10 Padalkar et al., 2013 (93) 6,890 (D) Not specified Free water
11 Palukuru et al., 2014 (96) 4,020 C—H stretch and C—C stretch PGs
combination
12 Padalkar et al., 2013 (93), 4,310 Combination of C—H stretch and PGs
Palukuru et al., 2014 (96) CH, deformation vibration
13 Palukuru et al., 2014 (96) 4,260 CH, bending vibration and 2nd Collagen
overtone
14 Palukuru et al., 2014 (96) 4,610 (A) Asymmetric C—H stretch and Collagen
C—H deformation
15  Palukuru et al., 2014 (96) 4,890 N-H in plane bending vibration ~ Collagen
16  Afara et al., 2012 (74), Afara 5,446-6,102 1st overtone CH,, and SH PGs + collagen
etal, 2014 (97) absorption
17 Afaraetal, 2012 (74), Afara 5,150 Water
etal, 2014 (97)
18 Afaraetal, 2012 (74), Afara 4,600-4,900 (G) Amide combinations and PGs + collagen
etal., 2014 (97) overtones
19 McGoverin et al.,, 2014 (95) 8,645 (E) Not specified Collagen
20  McGoverin et al., 2014 (95) 7,000 Not specified Free water
21 Afaraetal., 2014 (98) 9,959-12,489 3rd overtone CH, and ROH PGs
vibrations
22 Afaraetal, 2014 (98) 5,440-6,450 (H) 1st overtone CH,, and SH PGs
vibrations
24 Afaraetal, 2014 (97) 9,967-12,436 3rd overtone vibration Collagen
25 Afaraetal., 2015 (44) 9,091-12,500 (J) 3rd overtone OH vibration PGs + collagen
26 Afaraetal., 2015 (44) 10,309 (F) Not specified Water

AR = NIR absorption at 7,017 cm™'/NIR absorption at 8,510 cm . (40)

AR is lowest in normal cartilage (Grade 0), and highest in fully degenerated cartilage
(Grade 3). This parameter was utilized by Spahn et al. (40, 72) to discriminate among nor-
mal, grade 1, and grade 2 cartilage defects in human joints.

Shift in frequency of water absorbance peaks

Two dominant water peaks are observable in the NIR spectral region, one centered at
5,200 cm ™}, attributed to free and bound water (113) and the other at 6,890 cm ™", attributed
to free water (114). It is known that water in cartilage can be free, tightly bound to collagen,
or loosely bound to PGs (93). More so, since cartilage integrity is strongly correlated to
changes in total water content of its matrix, knowledge of the relative water content, both
free and bound water, could be used as an indicator of cartilage tissue integrity. During carti-
lage degeneration, the water peak centered at 5,200 cm ™" has been observed to undergo a
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slight shift to higher frequency (lower wavenumber). As the frequency of vibration depends
on the mobility of water, a shift to higher frequency means more mobile free water and less
mobile bound water (93). This spectral behavior due to articular cartilage water content,
detailed by Padalkar et al. (93), can be utilized as a parameter to evaluate early-stage cartilage
degeneration, which often occurs without any observable/visible changes in the tissue.

Secondary assessment: Spectral pre-processing and multivariate analyses

The non-specificity of NIR spectral peaks, owing to overlapping peaks, poses a major limita-
tion for the application of this optical technique. In addition, NIR spectral response of bio-
logical materials with high water content (like articular cartilage) tends to suffer from the
overwhelming effect of water, which significantly absorbs NIR light (115) leading to spectral
saturation and masking of peaks related to cartilage matrix components, thereby impeding
spectral interpretation. Nevertheless, these limitations are easily addressed by selecting
appropriate optical window during analysis (highlighted in Tables 1-5), together with appli-
cation of spectral pre-processing (116-118) and multivariate analytical method, such as
principal component analysis (PCA) (119, 120) and partial least square (PLS) regression
(121, 122), in order to extract relevant subtle information from the spectral data.

The application of multivariate statistical/analytical methods for analysis of NIR spectra
(chemometrics) has become a standard in fields of study and industry where NIR spectros-
copy is employed for analyses and quality control of products, such as in pharmaceuticals
(123). The goal of such multivariate spectral analyses is often to classify the samples based
on similar spectral features, or to predict certain physical or chemical properties of samples
from their spectra. The classification techniques that have been utilized for analyses of NIR
spectra include feature extraction and dimension reduction techniques like PCA (120), and
other algorithms like discriminant analysis (DA) (124), soft independent modeling of class
analogy (SIMCA) (125), support vector machines (SVM), etc. For prediction, multivariate
regression techniques are employed to develop predictive models which establish a linear
relationship between the spectral data (independent variables or predictors) and reference
values (dependent variables or response). Methods such as multiple linear regression (MLR),
principal component regression (PCR), and PLS regression are common for analysis of NIR
spectra.

Since the accuracy and performance of classification or prediction based on NIR spectra is
significantly influenced by the choice of spectral pre-processing performed prior to analyses,
it is critical to select the right pre-processing algorithm that would optimize classification/
prediction. Spectral pre-processing techniques are generally employed for scatter correction
and/or spectral transformation, such as derivative pre-treatment. Common spectral pre-
processing algorithms include normalization, standard normal variate (SNV), multiplicative
scatter correction (MSC), and derivatives, particularly first and second derivatives. Deriva-
tive pre-processing is effective for eliminating spectral baseline, since the derivative of any
function eliminates constant variables, as well as amplifying subtle changes in the spectra,
such as extracting information from partially masked peaks (shoulders). In Table 6, we high-
light the common spectral preprocessing, classification, and prediction methods that have
been employed in the analyses of NIR spectra of articular cartilage, with the corresponding
cartilage property under study.



APPLIED SPECTROSCOPY REVIEWS 11

Table 6. Review of spectral pre-processing and multivariate analysis of NIR spectra of articular cartilage.

SIN Authors Cartilage property Pre-processing  Classification  Regression

1 Afara et al.,, 2012a (74) Mankin score 1D, SNV PCA PLS

3 Afara et al., 2014a (98) PG content SLS PCA PLS

4 Afara et al., 2014b (97) Structural integrity, cellularity, SLS PCA, DA PLS
and matrix staining

5 Afara et al., 2013 (39) Thickness MSC, SNV, WD PCA PLS

6 Afara et al., 2013 (79) reswelling SNV PCA PLS

7 Afara et al., 2015 (44) Biochemical, biomechanical, 2D none PLS
and histological

8 Afara et al.,, 2016 (103) Elastic rebound MSC, 1D none PLS

9 Padalkar et al., 2013 (93) Water content MSC, 2D none PLS

10 Mc Goverin et al., 2014 (95) Thickness and modified SNV, 2D PCA PLS
Mankin grade

1 Mc Goverin et al., 2016 (100) ~ Water, PG, and collagen content  Extended MSC, none PLS

normalization, 2D

12 Brown et al. 2009 (87) PG depletion 1D, 2D PCA PLS

13 Palukuru et al., 2014 (96) Collagen and chondroitn Extended MSC, 2D none PLS
sulphate content

14 Palukuru et al., 2016 (101) PG and collagen content 2D none PLS

15 Baykal et al., 2010 (85) PG and collagen content MSC, 1D none PLS

16 Sarin et al.,, 2016 (102) Cartilage thickness, equilibrium 2D none PLS

modulus, and instantaneous
modulus

Notes: SNV = standard normal variate; PCA = principal component analysis; PLS = partial least squares; 1D = 1st derivative;
2D = 2nd derivative; SLS = straight line subtraction; DA = discriminant analysis; WD = wavelet detrending; MSC =
multiplicative scatter correction.

Clinical application of NIR spectroscopy for cartilage evaluation

So far, only a few researches have been published on the clinical applications of NIR spec-
troscopy for articular cartilage assessment. Nevertheless, it is worth noting that application
of this optical technique for evaluation of cartilage integrity is fairly recent, less than a
decade. The flexibility of NIR spectroscopy enables easy adaptability of the technique for
arthroscopic evaluation of cartilage. More so, development of NIR fibre optic probes with
similar design as traditional arthroscopic hooks, allows for easy application of this technique
during arthroscopic surgery. This is the approach of the arthrospec-one NIR arthroscopic
probe (Arthrospec GmbH, Jena, Germany), first applied by Spahn and coworkers
(40, 83, 84, 86, 92).

Table 7 highlights the literature on clinical application of NIR for characterization of
articular cartilage injury, defects, and integrity in human joints.

The outcome of their studies suggests that NIR is an effective tool for cartilage lesions dif-
ferentiation (92), detection, and analysis of initial cartilage pathology (84), evaluation of low
grade lesion (40), and determination of cartilage mechanical properties (86) in real-time
during arthroscopic surgery.

The probe has 1 mm diameter tip, with six peripherally arranged optical fibres for
illumination, and one centrally positioned fibre for detection. A major challenge in the
clinical application of NIR spectroscopy involves handling of the probe during spectral mea-
surement, as factors such as probe vibration, sufficient contact, and correct vertical position-
ing with respect to the tissue surface in the region of interest can affect the accuracy of
acquired spectral data (39, 79). Nevertheless, with the availability of optical systems with fast
and near-instant optical detectors capable of spectral measurements within micro-seconds,
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Table 7. A systematic and chronological literature review of the application of NIR spectroscopy for evalu-
ation of articular cartilage.

Spectral region,

wavenumber

S/N Author(s) Specimen and methodology (cm™") Results

1 Spahn et al., 2007 (40) Patients (N = 12) suffering 5,882-9,091 NIRS has a significantly (p = 0.000)
from knee pain for over higher specificity (0.96) and accuracy
3 months. (0.98) than MRI (0.54 and 0.70,

respectively).

2 Spahn et al., 2010 (83) Patients (N = 15) 5882-11,111  NIRS shows a significant (p < .001)
undergoing arthroscopic correlation within the observers of
knee operations. R =0.885 £ 0.036.

3 Hofmann et al., 2010 (84) Patients (N = 21) with knee 6,780-8,696  Significant (p > .007) correlations with
pain lasting for half a three KOOS sub-scores only were
year. found with NIRS. The Spearman'’s rank

correlation coefficient ranged
between 0.68 and 0.72.

4 Marticke et al., 2010 (86) Patients (N = 32) 5,882-9,091 Significant correlation between NIRS-
undergoing arthroscopic absorption and ICRS grade
knee operations. (R = 0.467) and Young’s Modulus
(R =0.535).
5 Spahn et al., 2013 (92)  Patients with degenerative 5,882-11,111  The mean NIR absorption value of 71.5
knee (N = 6) versus was obtained for traumatic knee, and
traumatic knee (N = 6). 31.7 for degenerative knee.

Study type: E = experimental; C = clinical, N = number of patients.
Only studies that have used spectral data within the IUPAC defined wavenumber region are considered: 4,000-12,500 cm ™' =
2,500-800 nm.

and sufficient training, these limitations can be minimized. In addition to the ease of cou-
pling NIR spectroscopy with traditional arthroscopy, the rapid action of this optical tech-
nique enables real-time evaluation and decision-making during joint surgery.

The occurrence of varying degrees of lesions is evident in 63% of knees undergoing arthros-
copy surgery (126-128). Thus, accurate quantitative evaluation and qualitative grading of car-
tilage lesions is crucial for decision-making during and after surgery. When fully developed
and optimized, NIR arthroscopy is likely to significantly improve the accuracy of arthroscopic
outcome, and revolutionize the way traditional arthroscopy is performed clinically.

Open questions and future directions

Considering existing research on the application of NIR spectroscopy for evaluation of artic-
ular cartilage, there are still a number of open questions and future work that need to be
addressed and undertaken before this optical technique can become a standard method for
both clinical and laboratory assessment of articular cartilage. These questions and future
work are outlined below:

1. There is still need for an in-depth understanding of the interaction between the NIR
light and cartilage properties, in order to understand the specific contribution of the
different components of the tissue to the overall spectra. This would allow for accurate
quantification of cartilage components and determination of tissue degeneration. This
can potentially be addressed using simulation approach.

2. What is the contribution of the different cartilage layers to its overall spectrum? This is
important as the collagen orientation, PG, and water content are depth-dependent
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(i.e., layer-dependent) and influence the functional response and health of the tissue.
For example, understanding the effect of the collagen network birefringence on the
spectral response may provide insight that may be essential for early-stage detection of
cartilage degeneration.

What is the contribution of the subchondral bone to the overall spectral output of
osteochondral samples? This understanding may enable characterization of subchon-
dral bone pathologies using NIR spectroscopy.

Can NIR spectroscopy be combined with other fast and non-destructive techniques
such as OCT and high frequency ultrasound for evaluation of articular cartilage and
subchondral bone? This multimodality approach could enable quantitative characteri-
zation and imaging of cartilage and subchondral bone during surgery.
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