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A B S T R A C T   

Consistent discharges of hospital wastewaters (HWWs) pose ecological risk to the biome of the receiving envi
ronment with cumulative effect on its healthiness. Understanding the taxonomic profile of microorganisms in the 
impacted systems is required to establish taxa that are bio-indicators of toxicants, and provide possible taxa for 
mitigating ecotoxicity of the HWWs. Geochemistry, pollution status and ecotoxicity of heavy metals (HMs) in 
HWW-impacted sewer (LU) were assessed. The microbiome profiling was based on 16S rDNA and ITS of 18S 
rDNA metagenomes. The degree of HMs contamination exceeded 50 and HMs pollution load index of LU was 
severe (1,084), which consequently exerted severe risk (1,411,575 toxic response factors) with very high toxic 
responses of Co, Cu, Pb, and Cd. Eco-toxicological impact of the HMs on LU skewed microbiome towards Pro
teobacteria (43%), Actinobacteria (18%), and about 5% apiece for Chloroflexi, Acidobacteria, Plantomycetes, 
and Bacteroidetes. Likewise, the relative abundance of in LU inclined towards Ascomycota (59%), Basidiomycota 
(17%) and unclassified Eukarya_uc_p (16%). Exclusively found in LU sediments were 44,862 bacterial species 
and 42,881 fungi taxa, while 72,877 and 53,971 species of bacteria and fungi, respectively, were found missing. 
Extinction and emergence of bacteria and fungi taxa in LU were in response to HMs ecotoxicity and the need for 
natural attenuation processes respectively. The profiled taxa in LU may be plausible in bioremediation strategies 
of the impacted system, and in designing knowledge-based bioreactor system for the treatment of HWWs before 
discharge into the environment.   

1. Introduction 

Wastewaters from hospitals like domestic wastewaters are effluents 
of large volume of water from different units and services of hospitals. 
The quantity and characteristics of the hospital wastewaters (HWWs) is 
proportional to the type of units and services in tandem with the econ
omy and size of the facilities. For example, 400–1200 L wastewaters per 
bed were reportedly generated every day in developed countries, but far 
lesser volume of wastewaters was associated with developing countries 
(Kumari et al., 2020). HWWs generally contain biological agents 
(Smiech et al., 2020), biologically active organic micro-pollutants 
(Castillo Meza et al., 2020), drug metabolites (Ngigi et al., 2020), 
chemical disinfectants, X-ray contrast agents, halogenated solvents 
(Castillo Meza et al., 2020), and metals (Alam et al., 2020) that are of 
great importance to the receiving environments. The components of 
HWWs do originate from substances used for medical, laboratory and 

research purposes along with excreta from patients in terms of drug 
metabolites. While the organic pollutants in HWWs have chemothera
peutic origins, the heavy metals (HMs) components are sourced from 
dental amalgam and medical devices residues causing rise in the HMs 
levels in the HWWs, which have recently drawn global attentions (Zhang 
et al., 2020). The HMs as toxicants in HWWs could therefore be cate
gorized along with bioactive organic micro-pollutants earlier reported 
by Castillo Meza et al., 2020 as contaminants of emerging concern from 
health facilities that impact the receiving environments. 

Treatment of HWWs before discharge into the environment in most 
developing countries is generally unpopular (Adeolu and Adewoye, 
2019). However, treatment of HWWs, where applicable across the 
globe, targeted the degradation and removal of the organic compounds 
(Kumari et al., 2020) and infectious pathogens (Smiech et al., 2020). 
Some examples of worldwide designs for HWWs treatments include 
membrane bioreactors, advanced oxidation process based on 
UV/H2O2/O2 (Mejia-Morales et al., 2020), thermal disinfection (Smiech 
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et al., 2020), biosorption using nano-materials (Pham et al., 2020), 
activated sludge, nanofiltration, and reverse osmosis (Kumari et al., 
2020). In these treatment designs, the organic components of HWWs get 
degraded to form sludge while the HMs components remained intact or 
partially bound to organic matter in high concentrations. Such 
non-treatment or incomplete eradication of eco-toxicants in the HWWs 
makes HWWs emerging point sources for HMs pollution in the envi
ronments where the wastewaters are discharged. Moreover, the use of 
HMs and their oxides as chemical agents in advanced oxidation pro
cesses during degradation of HWWs’ organic components (Mejia-Mor
ales et al., 2020) causes increase in HMs concentrations in the sludge 
(Zhang et al., 2020). Notable metals found in appreciable quantities in 
every discharge of HWWs include Hg, Cd, Zn, Pb, Cr, Fe, and Cu 
(Emmanuel et al., 2005; Zhang et al., 2020). 

Upon discharge of HWWs, the HMs contained thereof contaminate 
receiving environments and become hazardous to the ecosystems (Bas
tami et al., 2012; Salas et al., 2017). The concentrations of HMs in such 
receiving ecosystems continuously increase as more HWWs are dis
charged since HMs are non-degradable, thereby biomagnifies along the 
trophic level (Liu et al., 2019). The toxic metals do reportedly alter the 
biodiversity of the receiving ecosystem due to direct eco-toxicological 
impact on the biome with consequent extinction of susceptible taxa 
and dominance of tolerant strains (Oyetibo et al., 2017). However, 
selected microbial taxa adapt to the HMs-enriched ecosystems with 
evolution and horizontal transfers of HMs-resistance genes, which are 
known to exist together with antibiotic-resistant genes into a single 
integron in microbiomes (Castillo Meza et al., 2020; Paulus et al., 2019). 
Discharge of HWWs in contrast to domestic wastewater, triggers pro
liferation and spread of resistant pathogens leading to complex 
cross-selection patterns that constitute challenges to public health 
(Paulus et al., 2019). It has been found that bacterial integrons often 
combine antibiotic resistance genes and genes conferring HMs seques
trations in environmental matrixes, leading to complex co-selection 
dynamics between the two groups of genes (Oyetibo et al., 2010). 
Multiple-resistant hospital strains of enterobacteria, for example, have 
been observed to carry other resistance genes compared to those coding 
for resistance to streptomycin, chloramphenicol or spectinomycin in 
their integrons even when the antibiotics were not used in the hospital 
settings for decades (Leverstein-van et al., 2002). 

Intrinsically, there is dearth of information about toxic metal pollu
tion status and microbiome of freshwater that daily receive load of 
HWWs with ultimate goal of ameliorating the HMs ecotoxicity. Efforts 
have beleaguered impact of antibiotics and pharmaceutical molecules 
on microbiota of environments receiving HWWs with respect to resis
tome, without reverence to the dynamics of HMs eco-toxicity (Buelow 
et al., 2020). Understanding the correlation of HMs dynamics in terms of 

their eco-toxicological consequences on the biome, via microbial com
munity structure, is cogent to designing eco-friendly microbial-based 
decommissioning strategies that would completely ameliorate 
HWWs-impacted environment. The study area has consistently been 
exposed to HWWs, with no known pre-disposal waste treatment proto
col, for more than 50 years. Consequently, it is postulated that the 
toxicants in the HWWs would have affected the microbiota as an indi
cation of ecotoxicological impact of the HWWs on the receiving fresh
water environment. Profile of microbial assemblage in the 
HWWs-impacted milieu that could describe the impact of HWWs toxi
cants and those taxa that could drive eco-friendly amelioration of 
attendant stressors is scarce. Therefore, the present study is sought to fill 
the gap with the following specific objectives: 1) to determine the HM 
pollution status of freshwater that consistently receives HWWs; 2) to 
profile the bacterial and fungal taxa in the freshwater; and 3) to inte
grate the geochemistry and microbiome with goal of adopting strains 
that would serve as biotechnological tool for designing efficient inte
grated HWWs treatment system. 

2. Materials and method 

2.1. Study area and sampling 

A freshwater sewer (LU) at Idi-Araba, Surulere, Lagos, Nigeria (N6o 

30′ 55′′ E3o 21′ 17′′) receives loads (>100,000 L) of wastewater from a 
tertiary healthcare facility every day. The hospital is among top ten 
largest reference health facility in Nigeria and attends to more than 2000 
outpatient cases and 120 new emergencies on a daily average even as 50 
new patients are admitted every day to more than 600 beds available. 
The only treatment plant available to the facility had gone moribund for 
decades, whereby the generated HWWs are discharged into LU from 
various channels without any known form of treatment. However, the 
pristine freshwater (L1) is at Nigerian Conservation Foundation (NCF) 
with coordinates N6o 26′ 14′′ E3o 32′ 9′′, and has no history of pollution. 
Ten composite points at each location were sampled for surface sedi
ments using Ven Veen Grab from each of the sites into clean containers 
and was transported in ice chest (approx. 0 ◦C) to the laboratory for 
analyses, or otherwise stored at − 40 ◦C until further analysis. 

2.2. Physico-chemistry, heavy metal assay, and pollution index analyses 

The methods earlier reported by Oyetibo and colleagues (2010, 
2019) were used to determine texture, pH, conductivity, and other 
physico-chemical parameters of the sediments. Parameter determined in 
situ was pH by using pH meter, while ex situ assays include moisture 
content, texture, total organic carbon (TOC), total organic matter 
(TOM), nitrate, phosphate, sulphate, chlorides, and cation-exchange 
capacity (CEC). For HMs analyses, sediment (1 g) was digested in ratio 
3:1 aqua regia (HCl, HNO3), allowed to stay overnight and subjected to 
150 ◦C until there was disappearance of brown fumes. Along with the 
digestion of the sediment samples, 0.5 g each of SO-2 (reference material 
of Canada Center for Mineral and Energy Technology) was digested with 
10 ml concentrated HNO3 at 30 (±2) oC on a water bath for 2 h. The 
reference digests were filtered into a 10 ml volumetric flask and made up 
to the mark, such that the SO-2 digests form soluble nitrate of the metals 
in solution. The digests were resuspended with 5 ml HClO4 (70–72%) 
and was then assayed for Cd, Co, Cu, Ni, Pb, and Zn using an AAnalyst 
200 flame atomic absorption spectrophotometer (PerkinElmer, Canada) 
equipped with deuterium lamp background correction and an air- 
acetylene burner. The wavelengths used for cadmium, lead, cobalt, 
copper, zinc and nickel were 228.8, 283.3, 240.7, 324.8, 213.9 and 
231.1 nm analytical lines, respectively. The operational conditions of 
the equipment at appropriate lamps currents were: 1.0 nm spectral 
bandwidth, acetylene flow rate at 1400 ml min− 1, and nebulizer flow 
rate was 5 ml min− 1. Sample flow-rate of 7 ml min− 1 and background 
corrected atomic absorption were also adjusted. At least one blank 

List of abbreviations: 

UV ultra violet 
UV–Vis ultra violet visible 
DNA deoxyribonucleic acid 
PCR polymerase chain reaction 
ITS internal transcribed spacer 
dsDNA double stranded deoxyribonucleic acid 
HMs heavy metals 
HWWs hospital wastewaters 
OTUs operational taxonomic units 
BOD biochemical oxygen demand 
COD chemical oxygen demand 
NCBI national center for biotechnology information 
UPGMA unweighted pair group method with arithmetic mean 
Taxon XOR Taxon Exclusive Or Analysis  
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solution was run for each sample in order to evaluate the metal 
contamination by the reagents used. Prior to measurements of the 
sample digests, percentage recovery as calculated using standard 
methods was not less than 88% for cobalt and up to 94% for copper. The 
detection limits of the instrument during measurements at 95% confi
dence interval were (per liter) 0.002 mg, 0.010 mg, 0.020 mg, 0.050 mg, 
and 0.020 mg for Cd, Cu, Ni, Pb, and Zn, respectively. All the chemicals 
used including the metals standards for instrument calibration before 
measurement were of analytical grades purchased from Sigma-Aldrich 
(Germany). Measurements of samples and blank solution were in three 
replicates. 

The geochemical indexes of the measured HMs were determined to 
evaluate the degrees of contamination, accumulation, pollution and eco- 
toxicity of the HMs as previously described (Oyetibo et al., 2019). The 
indexes include: 

Contamination ​ factor (CF),CF=
Cn
Bn

(1)  

where Cn is the concentration of the metal n and Bn is the natural local 
background concentration of metal n. The Bn for each heavy metal was 
the mean of triplicate measured concentrations of freshwater sediments 
from “Nigerian Conservation Foundation (NCF)” where there is no his
tory of anthropogenic heavy metal pollution. 

Geo − accumulation ​ index
(
Igeo

)
: Igeo = log2

(
Cn

K × Bn

)

(2)  

where Cn is the concentration of metal n and Bn is as indicated above. 
The factor K is the background matrix correction factor due to litho
spheric effects, which is usually defined as 1.5 as defined by Muller in 
1969 (Oyetibo et al., 2019) was introduced to minimise the effect of 
possible variations in the Bn (background values). 

Pollution load index (PLI) : PLI =(CF1 × CF2 × CF3 × … × CFn)
1
n, (3)  

where CF is the contamination factor as described before. 

Degree of contamination(Cd), Cd

∑n

i=1
CF (4)  

Potential ​ ecological ​ risk ​ factor (Er), Ei
r = Ti

r.CF (5)  

where Tr is the toxic response factor for a given substance (see table A1) 

Potential ​ ecological ​ risk ​ index (RI), RI =
∑m

i
Ei

r, (6)  

2.3. Community DNA isolation, purification and quantification 

Genomic DNA extraction from 0.5 g (approx.) of sediment sample 
from each location was achieved with Fast DNA® Spin Kit for Soil (MP 
Biomedicals) using FastPrep® Cell Distruptor FP120 (Qbiogene, Hei
delberg, Germany) at 6.5 speed for 30 s following manufacturer’s in
struction. Possible interference of humic substances in the DNA was 
removed by addition of skim milk (20 mg per 500 of sample) to the 
sample in lysis matrix based on recommendations of Takada and Mat
sumoto (2005). DNA was purified and visualized in an ethidium bro
mide stained 1% (w/v) agarose gel using UV trans-illumination, while 
quantification was via UV–Vis photo-spectrometry using Epoch™ 
Spectrometer system (BioTek, Winooski, VT, USA). 

2.4. PCR amplification, library preparation and pyrosequencing 

The genomic DNA was amplified at the V3–V4 of the 16S rRNA using 
the primers 341F and 805R for bacteria with some archaea; and ITS2 
region using primer set ITS3-Mi (forward) and ITS4-Mi (reverse) for 
eukarya (ChunLab Inc., Seoul, South Korea). The first and second PCR 
recipe and conditions were according to existing protocol. The purified 
amplicons of 1st PCR were tagged with Illumina indices and adapters 
from a Nextera® XT Index Kit (Illumina, San Diego, CA, USA). Libraries 
were constructed at ChunLab Inc. using the Illumina MiSeq platform, 
where quality of the constructed libraries were checked with Agilent 
2100 Bioanalyzer System (Agilent Technologies, Palo Alto, CA, USA) 
using a DNA 7500 chip at ChunLab Inc. (Seoul, South Korea) and 
thereafter quantified using Quanti-iT™ PicoGreen™ dsDNA Assay kit 
(Invitrogen) according to the manufacturer’s instructions. Short DNA 
fragment was removed using CleanPCR™ (CleanNA, Netherlands), and 
sequencing was performed using Illumina, MiSeq Reagent Kit v2 (500- 
cycles) of Illumina MiSeq platform at ChunLab Inc., Seoul National 
University, Seoul, Korea. 

Metagenome raw reads were processed beginning from quality check 
and filtering of low quality (<Q25) reads using Trimmomatic 0.32 
software (Bolger et al., 2014). The pair-end sequence of the same strand 
of PCR amplicon were merged based on overlapping sequence infor
mation using PANDAseq software (Masella et al., 2012). ChunLab’s 
pipeline in-house algorithms were used to remove 16S rRNA PCR primer 
sequences, and UNITE (https://unite.ut.ee) was used to analyse ITS2 
gene. Non-specific amplicons were identified and removed using the 
HMMER program based search to exclude Singleton sequences (Eddy, 
2011), while sequences denoising were performed with DUDE-Seq 
software (Lee et al., 2017), sequences were de-replicated and 
non-redundant reads were extracted via UCLUST-clustering (Edgar, 
2010). UCHIME (Edgar et al., 2011) was used for detection and removal 
of chimera, while the remaining non-chimeric sequences were clustered 
into operational taxonomic units (OTUs) using UCLUST (Edgar, 2010). 
Query sequences that were matched with the reference sequences in 
EzBioCloud database (https://www.ezbiocloud.net/) by ≥ 97% simi
larity were considered to be at the species level while <97% similarity 
cut-offs were used for genus or higher taxonomic levels. The sequencing 
metadata obtained and used in this study have been deposited in the 
NCBI’s sequence read archive (SRA) database under BioProject and SRA 
accession number PRJNA604115. 

2.5. Statistical analyses 

Statistical analyses used, unless otherwise stated, were performed 
using the prism 5 software program (GraphPad Software, San Diego, CA, 
USA). The estimated coverage of the constructed gene libraries were 
calculated as C = 1 - (n

N) × 100 (Kemp and Aller, 2004), where n is the 

Table 1 
Physicochemical status of the impacted freshwater sewer receiving hospital 
wastewater and a pristine environment.  

Parameter LU L1 NESREA UNEP 

Soil Texture Sandy 
loam 

Silt NA NA 

pH 6.30 5.75 6.5–8.5 6.6–8.5 
Conductivity (μS/cm) 320 260 240 380 
Nitrate (mg kg− 1) 19.19 17.3 45 0.16 
Phosphate (mg kg− 1) 21.85 85.9 0.1 4.5 
Chloride (mg kg− 1) 744 – 250 20 
Sulphate (mg kg− 1) 15.82 9.43 100 500 
Ammonia (mg kg− 1) 7.06 17.6 0.50 0.21 
Moisture Content (%) 4.22 14.7 – – 
Total Organic Carbon (%) 1.28 1.25 – – 
Total Organic Matter (%) 2.21 2.16 – – 
Oil and grease (mg kg− 1) 0 BDL 10 – 
Total Petroleum Hydrocarbon TPH 

(gravimetric) (mg kg− 1) 
0.105 BDL – – 

Cation Exchange Capacity, CEC (meq 
100− 1) 

2.78 BDL – – 

LU = Lagos University Teaching Hospital, L1 = Pristine environment (Nigeria 
Conservation Foundation), NESREA = National Environmental Standards and 
Regulations Enforcement Agency, Nigeria, UNEP = United Nations Environment 
Programme, BDL = Below detectable limit. 
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number of Singletons after assembly, and N is the total number se
quences in the initial dataset. Rarefaction curves were obtained by 
plotting the number of observed OTUs versus the number of sequences 
along with calculations of Good’s coverage coefficient in order to 
determine the level of sequencing depth. Richness and diversity statis
tics of the bacterial community including abundance-based coverage 
estimator (SACE), the bias-correlated Chao1 (Scha o1), and the 
Shannon-Weaver diversity index were estimated using pre-calculated 
program of CLcommunity™ software package (ChunLab Inc.) in order 
to assay taxonomic diversity. Phylogenetic structure diversity was 
calculated by summing the shortest distance between the nodes of the 
system diagram in order to quantify the differences among species. 
Unweighted Pair Group Method with Arithmetic mean (UPGMA) tree 
was created using Mega Software (Mega 6). 

3. Results 

3.1. Physico-chemistry and heavy metal pollution of sewer sediments 

The physico-chemical properties of the sewer sediment that receive 
loads of HWWs in comparison with that of pristine freshwater were as 
presented in Table 1. The sediment appeared not rich in nutrients but 
high conductivity as against the recommended limits. Geochemical 
analysis revealed appreciable presence of Cd, Co, Cu, Pb, and Zn in the 
sediment of sewer receiving HWWs as shown in Table 2. The HMs 
pollution status of the sediments receiving the HWWs (Table 2) and 
ecological risk factors of the HMs in the sewer (LU) to autochthonous life 
(Table 3) were as determined via calculated indexes. Attempt to assess 
HM pollution and ecotoxicity informed simultaneous use of several in
dexes based on concentration of metals in unpolluted natural local 
background (L1) as presented in Tables 2 and 3 Anthropogenic addition 
of HMs (determined as CF) to the sewer sediments indicated that Co, Cu, 
Pb, Cd, Ni were very high, where Co (with Ci

f = 200,010) remains the 
highest, and Zn moderately contaminated (1 ≤ Ci

f < 3) the sediment at 
2.04 factor. Generally, degree at which the sediment of sewer receiving 
HWW was contaminated with HMs was extreme at 54 (16 ≤ Cd ˂ 32). The 
level of HM pollution in the sewer sediment as resolved via Igeo revealed 
varied degree of pollution, where Zn pollution was moderate, Ni 
pollution was high, and pollution with Cd, Pb, Co and Cu were severe. As 
such, HMs pollution load index of LU sediment was extreme at 1084 (1 ˂  
PLI ≤ 10). The ecological risk assessment of the HMs in the LU sediments 
as defined by RI was extreme at 1,411,575 (very high: RI ≥ 600) taking 
into account the toxic response (Er) of the sediments to HMs (Table 3). 
Toxic response of the sediment ecosystem to Co, Cu, Pb and Cd was very 
high (Ei

r ≥ 320), while toxic responses to Ni and Zn were moderate (160 
> Ei

r ≥ 80) and low (Ei
r < 40), respectively (Table 3). 

3.2. Taxonomic profile of bacteria and fungi 

The total valid sequence reads for LU and L1 were 56,101 and 
86,967, respectively, after quality filtering, trimming, and removing all 

Table 2 
Geochemistry, and heavy metal pollution indexes of heavy metals in freshwater sewer that receives hospital wastewaters.  

Metal Geochemistry (mg kgdw− 1) Pollution indexes 

Concentration LU L1 NESREA limit Igeo PI Er 

Cd 0.315 0.0013 0.003 7.3 242 2965 
Co 2.001 0.0001 0.0001 13.7 200,010 1,000,050 
Cu 7.072 0.0001 0.025 15.5 70,620 353,100 
Ni 0.0021 0.0001 0.02 3.81 21 105 
Pb 1.107 0.0001 0.04 12.85 11,070 55,350 
Zn 25.155 12.312 0.0123 0.49 2.04 4.57 

All values represent mean of triplicate analyses. 
LU = Freshwater sewer that consistently receive hospital wastewater; L1 = Pristine freshwater where there is no known history of anthropogenic activities; NESREA =
National Environmental Standards and Regulations Enforcement Agency, Nigeria; Igeo = geo-accumulation; PI = contamination index; Er = toxic response. 

Table 3 
Potential ecological risks of heavy metals in freshwater sewer that receives 
hospital wastewaters.   

Determinants Interpretation 

Contamination factors 
Cd (16 ≤ Cd ˂˂ 32) Very high (Cd ≥ 32): 54 
PLI 1 ˂˂ PLI ≤ 10 1084 
CF Very high (Cfi ≥ 6) Co > Cu > Pb > Cd > Ni 

Considerable (3 ≤ Cfi < 6) 
Moderate (1 ≤ Cfi < 3) Zn 
Low (Cfi < 1) 

Ecological risk factors 
RI Very high (RI ≥ 600) 1,411,575 
Er Very high (Eri ≥ 320) Co > Cu > Pb > Cd 

High (320 > Eri ≥ 160) 
Considerable (160 > Eri ≥ 80) Ni 
Moderate (80 > Eri ≥ 40) 
Low (Eri < 40) Zn 

CF = contamination factor (Cfi); Er = toxic response; Cd = degree of contami
nation; PLI = pollution load index; RI = total risk response. 

Table 4 
Alpha diversity of microbiome evenness, richness and varieties of species in the 
sediments.   

Bacteria Eukarya (Fungi) 

L1 LU L1 LU 

Actual 
Valid reads 83,019 55,793 67,121 51,481 
OTUs 8693 6390 1446 1113 
Estimated richness 
ACE 8850.7 6538.3 1460.3 1130.5 
HCI 8881.5 6568.8 1469.4 1140.9 
LCI 8820.6 6508.6 1451.4 1120.4 
Chao1 8723.4 6423.7 1448.3 1116.3 
HCI 8738.3 6439.8 1454.5 1123.4 
LCI 8713.4 6412.8 1446.7 1114.1 
JackKnife 9126 6775 1485 1157 
HCI 9126 6775 1485 1157 
LCI 9126 6775 1485 1157 
Estimated diversity 
NPShannon 7.96 7.83 4.52 4.82 
Shannon 7.777 7.641 4.499 4.788 
HCI 7.790 7.655 4.519 4.805 
LCI 7.765 7.626 4.479 4.772 
Simpson 0.0016 0.0016 0.0855 0.0259 
HCI 0.0017 0.0017 0.0873 0.0264 
LCI 0.0016 0.0016 0.0836 0.0254 
Good’s Lib. Coverage (%) 99.5 99.2 99.9 99.9 

Clustering of OTUs found was achieved with CD-HIT and the open reference 
method as all taxa were selected for analysis; HCI = High Confidence Interval 
(95%); LCI = Low Confidence Interval (95%); OTUs = Operational taxonomic 
units determined at 97%. 
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chimeric sequences (Table 4). Based on taxonomic groupings depicted in 
the supplementary material (Table A2) were displayed in Fig. 1 as 
taxonomic composition and relative abundance of bacteria (Fig. 1a) and 
fungi (Fig. 1b) phyla. Proteobacteria apparently dominate the impacted 
LU (43%) and the pristine L1 (38%). The relative abundance of Chlor
oflexi in the HWW impacted LU (5%) appeared to be lesser than that of 
L1, as similar observation was vivid with Acidobacteria (LU: 5%; L1: 
11%). In the contrary, notable higher abundance of Actinobacteria (LU: 
18%; L1: 6%), Plantomycetes (LU: 5%; L1: 2%), and Bacteroidetes (LU: 
6%; L1: 2%) in relation to the total valid sequence reads were observed 
in the HWW impacted sediments in comparison with the pristine envi
ronment. Also observed among the sequence reads, were some phyla of 
Archaea in the pristine L1 but apparently not found in the impacted LU 
sediments. Fungi composition revealed that relative abundance of 
fungal phyla was skewed in LU where Ascomycota (59%), Basidiomy
cota (17%) and unclassified Eukarya_uc_p (16%) dominated the total 
valid sequence reads. The dominant fungal sequence reads of the 

pristine L1 were not only Ascomycota (38%), and Eukarya_uc_p (15%); 
but also Chytridiomycota (28%) that was completely absent in the 
impacted LU, as well as unclassified Fungi_uc that constituted 10% of the 
fungal sequence reads in pristine L1 but 4% in the HWW impacted LU. 
Other fungal phyla with relative abundance greater than 1% found in 
the pristine L1 but missing in the sediments of LU include Mucorales_p 
and Glomeromycota. Nevertheless, circular Heat map delineation of 
bacterial and fungal taxa and their phyla proportion in the impacted LU 
at cut off above 5% confirmed abundance of Proteobacteria, Actino
bacteria, Chloroflexi and Acidobacteria among the bacteria taxon, while 
Ascomycota, Eukarya_uc_p, Basidiomycota, and Fungi_uc dominated the 
fungi kingdom (see Fig. A1). 

3.3. Diversity and phylogeny of bacteria and fungi 

A higher number of OTUs per sequence reads were consistently 
observed in the pristine L1 than the impacted LU as depicted in the 
asymptotic rarefaction curves (Fig. 2). UCLUST clustering described the 
detected OTUs in the rarefaction curves, such that 95% confidence in
tervals between the curves did not allow the bacterial and fungal OTUs 
in LU and L1 to overlap. Founded on UCLUST algorithm, richness and 

Fig. 1. Taxonomic composition of bacteria (a) and fungi (b) phyla present in 
the sediments of pristine environment (L1) and hospital wastewater impacted 
freshwater (LU). ETC represents aggregation of phyla whose sum sequences are 
less than 1%. 

Fig. 2. Rarefaction curve of the operational taxonomy units (OTUs) of the 
bacterial (a), and fungal (b) sequence reads associated with the sediments. 
Clustering of OTUs in sediments was based on taxonomy-dependent clustering 
and taxonomy-based clustering (TDC-TBC), which first identified sequences at 
species level using a similarity-based identification method that hits against the 
EzBioCloud database (https://www.ezbiocloud.net/), and the sequences that 
cannot be identified (sequences with <97% similarity) were then subjected to a 
TBC to be assigned OTUs. Confidence intervals of the curves were 95%. 
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diversity of the bacteria and fungi were estimated as presented in 
Table 4. Not less than 99% of the sequences in sediments represented 
bacteria and fungi present in the sediments of both impacted LU and 
pristine L1 as portrayed by Goods libraries coverage estimator. The 
estimated richness via ACE, Chao1 and JackKnife described the 
impacted LU to contain less rich OTUs of bacteria and fungi than the 
pristine L1. Interestingly, fungal OTUs in the impacted LU appeared to 
be more diverse than those in the sediment of pristine L1 as estimated 
with NPShannon, Shannon and Simpson determinants. However, di
versity of bacterial OTUs was observed to be higher in L1 than LU by 
using same diversity estimators. 

Evolutionary relationships of the most abundant taxa as OTUs of 
bacteria and fungi in the impacted LU were delineated as contigs and 
calculated using UPGMA to infer dendogram (Fig. 3). Prominent among 
the bacterial contigs were methylotrophs, Rhodospirillaceae, Laceyella 
sacchari, Solibacterales, Gemmatimonadales, Chloroflexi, Actinomyces, 
Asanoa hainanensis, Actinoplanes, Cytophagaceae and Chitiniphagaceaeis. 
Whilst most of the dominant fungal contigs were not yet classified, those 
identified include contigs named as Aspergillus fumigatus, Penicillium 
oxalicum, coprophilous fungi, Talaromyces pinophilus, Arthrographis kal
rae, Cochliobolus australiensis, Mortierella and Trichosporon. Based on 
Taxon XOR (Taxon Exclusive Or) Analysis by UCLUST function, bacteria 
and fungi taxa (20 most abundant species) that were exclusively found 
in pristine L1 and HWW-impacted LU sediments were presented in 
Table 5. It was revealed that 72,877 and 44,862 bacterial species were 
exclusively found in the sediments of L1 and LU, respectively. Moreover, 
53,971 fungal species found in L1 sediment were found missing in HWW 
impacted sediment, while 42,881 fungi taxa existing in HWW impacted 
sediment were not found in the sediment of pristine L1. Notwith
standing, the bacteria taxa exclusively found in both sediment remained 
unclassified unlike the fungi taxa. 

4. Discussion 

The concept of assessing HWW hazards involves characterization of 
geochemistry and microbiome of the environments that receives the 
wastewater. Of paramount concern to freshwater bodies is the indis
criminate discharge of hospital wastewater without any treatment 
leading to release of toxic pollutant such as metals into freshwater 
bodies. The unregulated discharge HWW into environment is apparently 
the situation in LU as evident with the HM concentrations found in the 
sediments that is above recommended limits. HMs is collectively 
considered as one of the most important factors capable of influencing 
the aquatic environment (Rameshkumar et al., 2019). The high metal 
concentrations obtained are due to inability to treat effluents from 
hospital before being discharged into the environment. The high con
centration of Pb and Cu reported in the present study agreed with pre
vious studies (Adekoya et al., 2006; Ndimele et al., 2011). The 
importance of pH to biochemical functions and bioactivities in hydro
sphere cannot be overemphasized, as optimum pH level of 7.0–8.5 was 
recommended (Rameshkumar et al., 2019). Acidic pH level of the 
impacted LU may be connected to the nature of the HWW, triggering the 
fluxes of acidophilic and acid-tolerant organisms in LU. In a related 
study, Bala and Mukherjee (2010) observed a pH range of 5.34–8.67, 
and concluded that it was due to metal pollution. Anions produced by 
dissociation of carboxyl and hydroxyl groups in total organic matter do 
result in competitive adsorption with phosphate on the surface of the 
sediments and thus explains the low nutrients recorded in LU. 

Attempts to illuminate the pollution status and ecological risks of the 
HMs contained in the impacted LU via risk analysis and characterization 
established extreme pollution with Co, Cu, Pb and Cd exerting extremely 
high toxicities to the ecosystem. The HM pollution status as determined 
by Igeo and PI, cum severe degree of HM contamination that by far 
exceeded 32 indicated the HWW-impacted LU is severely polluted with 
all the HMs determined (except Zn and Ni). A very high contamination 
with Cd observed in the HWW-impacted LU is similar to earlier 

observation in sewerage impacted with industrial wastewaters (Oyetibo 
et al., 2019). The additional high contamination indexes of Co, Cu, Pb 
and Ni is an indication that HMs may be more associated with HWWs 
than many industry-based wastewaters. The pollution indexes of Pb and 
Cd were worrisome since they have no metabolic relevance to biome 
than exerting ecotoxicity to autochthonous organisms in the sediment of 
the impacted LU. The astronomically high total risk response (1,411, 
575) of the impacted LU to the HMs is unprecedented and would defi
nitely have adverse effect on autochthonous organisms in the hydro
sphere. High levels of Pb and Cd in sediments have previously been 
reported to impact residing organisms (Laffite et al., 2016). As such, the 
toxic responses of Pb and Cd exceeding the very high threshold are 
suggested to definitely alter microbiome taxonomic profile in the 
HWW-impacted LU. This was depicted with a lesser total valid sequence 
reads and actual OTUs obtained in the HWW-impacted LU than those of 
the pristine L1 sediment as evidence of microbial abundances and 
activities. 

Dominance of Proteobacteria in the two ecosystems is not unusual, 
but its higher relative abundance in LU than L1 may be connected to the 
oscillatory effect of the toxic HMs in the sediments of HWW-impacted 
LU. The expected diverse bacterial phyla in pristine L1 unlike skewed 
phyla present in the impacted LU must be due to lack of anthropogenic 
activities. Thus, HWW is suggested to have impaired taxonomic 
composition of the bacterial community in the LU ecosystem. Similarly, 
fungal taxonomic composition was also tilted in the impacted LU as 
against the pristine L1 where many fungal phyla indicated bereft eco- 
toxicological fluxes (Bai et al., 2019). Decrease in diversities of bacte
ria and fungi in the HWW-impacted LU due to toxic doses of HMs cor
roborates with previous reports (Oyetibo et al., 2019). A similar 
decrease in composition of Chloroflexi and Acidobacteria along with the 
abundance of unclassified Fungi_uc in LU is presumed to be as a result of 
high contamination of HMs that stemmed biodiversity of bacteria and 
fungi. The relative richness of Chloroflexi and Acidobacteria in LU was 
clearly reduced, while Actinobacteria increased in LU even in presence 
of metal pollutant. In addition, Chloroflexi is important in transforming 
chemical and biological contaminants present in sediments. Members of 
Ascomycota, Chytridiomycota etc have been found previously in fresh
water sediments (Lin et al., 2019; Vargas-Gastélum et al., 2019). Asco
mycota is commonly reported as the most abundant phylum in 
sediments (Zhang et al., 2016; Barone et al., 2018) and this agrees with 
the results obtained in the present study. 

Phylogenies of most abundant sequences as contigs of bacteria and 
fungi revealed evolutionary relatedness of the taxonomic profile. Among 
the bacterial contigs were species that utilize methane including Meth
ylocystis and Methylosinus genera that are pivotal to global methane cycle 
and biotechnological production of value-added bioproducts via 
methane utilization (Nguyen et al., 2018). Dominance of the methano
trophs and other anaerobes including Rhodospirillaceae that are active in 
biogeochemical cycling of nitrogen and sulfur; Solibacterales that reduce 
nitrates; and anoxygenic phototrophs, Chloroflexi that use halogenated 
organics as electron acceptors are evident that anaerobiosis prevails in 
the HWW-impacted LU. The anaerobiosis conditions must be due to high 
BOD/COD of HWWs, which must have deprived the impacted LU 
ecosystem of available oxygen and thus extinct autochthonous aerobic 
organisms. Similar phenomenon may have been responsible for abun
dance of contigs named as Aspergillus fumigatus, Penicillium oxalicum, 
coprophilous fungi, Talaromyces pinophilus, Arthrographis kalrae, 
Cochliobolus australiensis, Mortierella and Trichosporon. These fungal 
species are variously of ecological importance in HWW-impacted LU. 
For example, contigs represented by Aspergillus fumigatus is pathogenic 
(Deshmukh et al., 2020), implying the impacted LU may be reservoir for 
microbial pathogens; Penicillium oxalicum was reportedly associated 
with chromium bioremediation (Luo et al., 2020) and consequently may 
be involved in HMs sequestration in the impacted LU; and Trichosporon 
that is useful in degradation of lignocellulose (Yu et al., 2019) as evi
dence of coexistence of complex organic compounds with HMs in the 
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Fig. 3. Evolutionary relationships of most abundant bacteria (a) 
and fungi (b) taxa based on operational taxonomic units (OTUs) 
delineated by the OrthoAni scale as dendogram. The evolutionary 
history was inferred using the UPGMA. The optimal tree with the 
sum of branch length = 14.12054688 is shown. The evolutionary 
distances were computed using the Maximum Composite Likeli
hood method and are in the units of the number of base sub
stitutions per site. The analysis involved 28 nucleotide sequences. 
Codon positions included were 1st+2nd+3rd + Noncoding. All 
positions containing gaps and missing data were eliminated. 
There were a total of 402 positions in the final dataset. Evolu
tionary analyses were conducted in MEGA6.   
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impacted LU. Large number of bacterial (72,877) and fungal (53,971) 
species found in L1 but missing in the impacted LU depicted susceptible 
species that were extinct due to HMs ecotoxicity. However, those species 
of bacteria (44,862) and fungi (42,881) that were exclusively found in 
the impacted LU may be invading strains from the HWW and possibly 
other sources that have adapted to the prevailing conditions and would 
drive natural attenuation of the impacted LU. 

5. Conclusion 

The findings in the present study established that discharge of HWW 
into sewer of freshwater impacted the environment with toxic loads of 
HMs that exerts ecotoxicity to the microbiome. Pollution indexes 
revealed the HWW-impacted sediment was severely contaminated with 
Co, Cu, Pb and Ni, while ecological risk assessment established that 
extreme ecotoxicity was exerted by Co, Cu, Pb and Cd. The impact of the 
toxic doses of the HMs on microbiome indicated drift in the taxonomic 
profile of the autochthonous bacteria and fungi with dire losses of mi
crobial richness and diversity. Fewer phyla were observed in the HWW 
impacted sediment and the taxa were predominantly species that 
tolerate anaerobic conditions. Extinction and emergence of bacteria and 
fungi taxa in the impacted sediment were in response to HMs ecotoxicity 
and need for natural attenuation processes, respectively, which can be 
explored further for the bioremediation strategies of the HWW impacted 
sewer. The profiled taxa in the impacted sediment may be applicable in 
designing knowledge-based bioreactor system for the treatment of 
HWWs before discharge into the environment. 
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