Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some prooxidant-induced lipid peroxidation in rat pancreas

Ganiyu Oboh, <u>Ayokunle O. Ademosun</u>, <u>Peluola O. Ayeni</u>, <u>Olasunkanmi S. Omojokun</u> & <u>Fatai</u> <u>Bello</u>

Abstract

This study was designed to investigate the effect of quercetin, its glycosylated conjugate rutin and various combinations of the two flavonoids on carbohydrate-hydrolyzing enzymes associated with type 2 diabetes (α -amylase and α -glucosidase) in a bid to understand the possible mechanisms of action by which quercetin and rutin could be used in the prevention/management of the degenerative condition. The aim of this study is to investigate the effect of quercetin, rutin, and various combinations of the two flavonoids on α -amylase and α -glucosidase activities and the ability of the flavonoids to inhibit some pro-oxidants-induced lipid peroxidation in rat pancreas. The effect of the flavonoids on α -amylase and α -glucosidase activities as well as prooxidant (Fe²⁺ and SNP)-induced lipid peroxidation in rats' pancreas homogenates was investigated. Rutin (IC₅₀ = 0.048 μ M) exhibited a significantly (P < 0.05) higher inhibition of Fe²⁺-induced lipid peroxidation than quercetin (IC₅₀ = 0.075 μ M). Furthermore, rutin had a stronger inhibition of α -amylase (IC₅₀ = 0.043 µM) and α -glucosidase (IC₅₀ = 0.037 µM) activities than quercetin [α -amylase (IC₅₀ = 0.061 μ M); α -glucosidase (IC₅₀ 0.038 μ M)]. A combination of 25 % quercetin and 75 % rutin showed the strongest inhibition (P < 0.05) of α amylase activity (IC₅₀ = 313.87 μ g/L) while 100 % quercetin showed the least inhibition of α amylase (IC₅₀ 507.61 μ g/L) activity and same trend was followed for α -glucosidase activity. This study revealed that glycosylation increased the inhibitory ability of quercetin on key enzymes linked to type 2 diabetes (α -amylase and α -glucosidase), and combination of quercetin and rutin had higher synergistic inhibitory abilities on the enzymes than the individual flavonoids, suggesting that a combination of food sources rich in these flavonoids could be very effective in the management/prevention of type 2 diabetes.

Keywords : Quercetin, Rutin, α -amylase, α -glucosidase, Lipid peroxidation, Glycosylation

<u>Comparative Clinical Pathology</u> volume 24, pages1103–1110 (2015)

https://doi.org/10.1007/s00580-014-2040-5

• Published: 10 December 2014