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Abstract: The bioactive compounds produced by actinobacteria have played a major role in
antimicrobials, bioremediation, biofuels, enzymes, and anti-cancer activities. Biodegradable microbial
flocculants have been produced by bacteria, algae, and fungi. Microbial bioflocculants have also
attracted biotechnology importance over chemical flocculants as a result of degradability and
environmentally friendly attributes they possess. Though, freshwater actinobacteria flocculants
have been explored in bioflocculation. Yet, there is a paucity of information on the application
of actinobacteria flocculants isolated from the marine environment. Similarly, marine habitats
that supported the biodiversity of actinobacteria strains in the field of biotechnology have been
underexplored in bioflocculation. Hence, this review reiterates the need to optimize culture conditions
and other parameters that affect bioflocculant production by using a response surface model or
artificial neural network.
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1. Introduction

Actinobacteria have been isolated and screened from different ecosystems such as soil, freshwater,
and marine environment and the bioactive compounds produced have been explored in different
fields of biotechnology by different researchers [1,2]. The class Actinobacteria represents the group
of microorganisms that harbor several important bioactive compounds that have been discovered
including antimicrobials, antitumor agents, antiparasitics, anticancer agents, and enzymes [3,4].
Recently, bioactive compounds produced by actinobacteria have been explored in bioflocculation,
which could serve as a replacement to chemical flocculants in wastewater treatments. Microbial
flocculants are biopolymers which facilitates particles to particle flocculation through the process
of forming bridges, thus resulting in the agglomeration of suspended particles (Figure 1).
Extracellular polymeric substances including polysaccharides, glycoproteins or nucleic acids, proteins,
and proteoglycans are the major components of bioflocculants [5,6]. Microbial flocculants potentiate
huge remarkable applications in biotechnology, and this could be attributed to their biodegradability,
unique flocculation performance and absence of toxicity [7,8]. They have been widely employed in
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the treatment of different wastewaters, removal of steroid estrogen, precipitation of pharmaceutical
proteins, adsorption of heavy metals, drinking water purification, food processing, and fermentation
industries [9,10]. On the other hand, inorganic flocculants (polyaluminum chloride and ferric chloride)
and organic flocculants (polyacrylamide and polyethylenimine) are also used in wastewater treatment
and other biotechnological applications. However, their applications pose a threat to aquatic organisms
and human beings [11]. For instance, applications of chemically synthesized compounds have
been associated with various health diseases concerns including Alzheimer’s, genotoxic disorders,
and carcinogenicity. Another important factor is the cost of chemical flocculants which are not affordable
for many developing countries. The setbacks attributed with chemical flocculants have necessitated
the exploration of biodegradable flocculants which are environmentally friendly and can be used to
replace the biotechnological applications of the synthesized flocculants. Biodegradable flocculants
produced by microorganisms including actinomycetes are currently gaining traction due to their
advantage of environmental friendliness. Some of these bioflocculant-producing microorganisms
have been isolated from sludge, soil, wastewaters, rivers, dams, alkaline lake, and marine intertidal
sludge [12,13]. Actinobacteria strains isolated from freshwater, dams, and sludge have been implicated
in bioflocculation and their industrial applications in wastewaters treatment have been validated.
However, there is paucity of information regarding marine actinobacteria bioflocculant and their role
in flocculation. Hence, there is need to explore the diversity of marine actinobacteria for bioflocculation
and validate their possible industrial applications in dye and heavy metals removal, wastewater
treatment, and synthesis of nanoparticles. On this note, this review summarizes actinobacteria that
have been isolated and screened from the freshwater environment and the need to explore marine
actinobacteria bioflocculant and validate their potentials in biotechnology.

Figure 1. Diagrammatic description of the bioflocculation process (created with BioRender.com).

Flocculants can be classified into organic, inorganic and natural flocculants as itemized in
Table 1 below.

Table 1. Classes of flocculants.

Inorganic Flocculants Organic Flocculants Natural Flocculants

Polyaluminum chloride Polyacrylamide Chitosan

Aluminum sulphate Polyethylene amine Cellulose

Aluminum chloride Gum and mucilage

Ferric chloride Sodium alginate

Alum Tannin

Ferrous sulphate Microbial flocculants
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2. The Phylum Actinobacteria

Actinobacteria have played an important role in their associations with various higher organisms
and the phylum includes species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium,
and Tropheryma, soil populations (Micromonospora and Streptomyces species), plant commensals
(Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Interestingly, actinobacteria
equally play an important role as both symbionts and pathogens in plant-associated microbial
communities. According to Bergey’s Manual of Systematic Bacteriology, phylum Actinobacteria is divided
into 6 classes, including Actinobacteria, Acidimicrobiia, Coriobacteriia, Nitriliruptoria, Rubrobacteria,
and Thermoleophilia. Among these, the class Actinobacteria is further subdivided into 16 different orders
including Actinopolysporales, Actinomycetales, Bifidobacteriales, Catenulisporales, Corynebacteriales,
Frankiales, Glycomycetales, Jiangellales, Kineosporiales, Micrococcales, Micromonosporales,
Propionibacteriales, Pseudonocardiales, Streptomycetales, Streptosporangiales, and Incertae sedis [14].
The order Actinomycetales is now limited to the family members Actinomycetaceae, and the other
suborders that were formerly part of this order are now known as distinct orders [15]. Thus, 43 of the
53 families that fall within the phylum Actinobacteria are designated to a single class Actinobacteria,
whereas the other five classes represent only 10 families [16]. They are largely found in aquatic
(freshwater and marine) and terrestrial environments. However, the greatest actinobacterial biodiversity
lies in the oceans [14] and are considered the treasure house of secondary metabolites [17]. They are
associated with the production of secondary metabolites and bioactive compounds which includes
enzymes, antitumor and anti-parasitic agents, vitamins and antibiotics which are very active against
pathogens [18]. It has been recently proposed that actinobacteria are distributed in marine environments
and such includes mollusks, mangroves, fish and sponges, sediments, and seaweeds. Furthermore,
Dietza maris, Rhodococcus erythropolis, and Kocuria erythromyxa as a representative of marine actinobacteria
have been isolated from seafloor sediment [19]. According to Dharmaraj [20], the marine environment
harbors varieties of actinobacteria which are not found in the terrestrial environment.

3. Bioactive Compounds from Marine Actinomycetes

Actinomycetes are Gram-positive aerobic bacteria with a high content of guanine and cytosine in
their DNA and account for over 50% of all bioactive microbial compounds discovered as documented
in Dictionary of Natural Products [21]. The genus Streptomyces is accountable for over 80% of the
bioactive compounds produced among actinomycetes [22]. Furthermore, they are able to breakdown
insoluble remains of other microorganisms and this includes lignocellulose and chitin [14]. In addition,
they breakdown complex organic materials by providing different enzymes which include amylases,
ureases, and cellulases. Thus, confirms the importance of Streptomyces in providing solutions for
recycling chemicals that can pose problems to the biogeochemical process. Marine actinobacteria are
prokaryotes and some of the actinobacteria genera include Streptomycetes, Actinomycetes, Arthrobacter,
Frankia, Micrococcus and Micromonospora. It has been documented that microorganisms from marine
sources have played a vital role in bioremediation and they are rich in biological macromolecules,
thus affirming their importance in biotechnology [23]. Marine actinobacteria potentiate the capability
of producing secondary metabolites as shown in Table 2 and the enzymes they produce have the
capabilities of catalyzing different biochemical reactions [24]. It is noteworthy that marine actinobacteria
could survive extreme climatic conditions such as high pressure, high salinity, and high temperature,
thus modifying some physiological conditions to survive and enhance the production of novel bioactive
compounds [25,26]. The presence of actinobacteria in different marine environments and habitats
have been confirmed and validated by different researchers. The genus Streptomyces from marine and
terrestrial environment have been found to be the highest producing strains of bioactive compounds.
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Table 2. Some secondary metabolites produced by marine actinobacteria.

Compound Species Other Biological Activity References

Antibacterial activity

Abyssomicins Verrucosispora sp. – [27]

Bonactin Streptomyces sp. Antifungal [28]

Chloro-dihydroquino Streptomyces sp. Anticancer [29]

Diazepinomicin Micromonospora sp. Anticancer;
anti-inflammatory [30]

Frigocyclinone Streptomyces griseus – [31]

Essramycin Streptomyces sp. – [32]

Lynamicins Marinispora sp. – [33]

Marinopyrroles Streptomyces sp. Cytotoxic [34]

Caboxamycin Streptomyces sp. Cytotoxic [35]

Himalomycins Streptomyces sp. – [36]

Chandrananimycin Actinomadura sp. Antialgal; antibacterial [37]

N-(2-hydroxyphenyl)-2-
phenazinamine(NHP) Nocardia dassonvillei Anticancer [38]

Anticancer activity

Salinosporamide A Salinispora tropica – [39]

Caprolactones Streptomyces sp. – [40]

3, 6-Disubstituted indoles Streptomyces sp. – [41]

IB-00208 Actinomadura sp. – [42]

Antitumor activity

Chinikomycins Streptomyces sp. – [43]

Glyciapyrroles Streptomyces sp. – [35]

Mechercharmycin A Thermoactinomyces sp – [44]

Aureoverticillactam Streptomyces
aureoverticillatus – [45]

Arenicolides Salinispora arenicola – [46]

Chalcomycin Streptomyces sp. – [9]

3.1. Isolation and Maintenance of Cultivable Actinobacteria for Bioflocculant Production

Actinomycetes usually exist in mixed bacterial consortium in soil, water, marine sediments,
and sponges [47,48]. For the sake of eliminating non-sporulating bacteria from samples, each sample is
usually subjected to pre-heat treatment at 60 ◦C for 15 min. Afterwards, the samples are thoroughly
shaken in sterile medium, vortexed for 2 to 5 min, and are serially diluted (10−4 and 10−6) before
plating on selective media for the isolation of actinobacteria. The selective isolation media generally
employed includes: M1 Agar [49], ISP2 and NaST21Cx Agar [50], R2A Agar [51], and Marine Agar
(MA) 2216 [52]. The media are usually supplemented with penicillin (100 µg mL−1) or nalidixic
acid (25 µg mL−1), and cycloheximide (100 µg mL−1) or potassium dichromate (50 µg mL−1) to
purposely inhibit the growth of other bacteria and fungi respectively. Bacterial colonies that show
resemblance to actinobacteria under light microscope are then purified several times on respective
media. For isolation and purification purposes, colonies are individually streaked out onto any isolation
media of choice, prepared with sea water and eventually transferred on new plates until pure cultures
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are obtained. Isolated bacteria are usually stored at −20 and −80 ◦C, in 20% glycerol and isolation
medium for maintenance.

3.1.1. Plackett–Burman (PB) Design for the Screening of Bioflocculant Production

PB is a design tool developed for screening n factors specifically in n + 1 experimental studies.
In comparison to the conventional full factorial design, PB design notably reduces the number of
experiments required to reach the set goal, thus reducing the cost of resources in terms of labour and
time. It involves using PB design to determine the variables that has great influence on bioflocculation
activity and two levels of medium variable concentration, designated as +1 (high) and –1 (low) are
usually explored. NCSS version 12 (NCSS, LLC, Kaysville, UT, USA) statistical software may be
applied for designing and developing the PB experimental matrix according to the first-order regression
equation as described in Equation (1):

Y = b0 +
k∑

i=1

b1xi

where Y is the response (bioflocculation activity), b0 is the model intercept, bi is the linear coefficient,
xi is the level of the independent variable and k is the number of variables involved. Although the
model designed does not explain the synergy between the variables; however, it can be employed for
screening in identifying variables that significantly influence the response [53]. Furthermore, variables
that exhibit higher influence with respect to bioflocculation activity could be subjected to additional
optimization studies.

3.1.2. Bioflocculation Process Optimization Using Central Composite Design (CCD)

The influence of the most significant process variables identified by the PB design could be further
investigated using response surface methodology (RSM) coupled with CCD. In order to establish a
relationship between the dependent variable and the independent variables, the bioflocculation activity
are fit to a second-order regression model as shown in Equation (2):

Y = δ0 + δ1A + δ2B + δ3C + δ12AB + δ13AC + δ23BC + δ11A2 + δ22B2 + δ33C2 (2)

where Y is the bioflocculation activity (response), δ0 is the intercept term; δ1, δ2, and δ3 are the
coefficients of the linear terms; δ12, δ13, and δ23 are the coefficients of the interaction terms; δ11, δ22,
and δ33.

Each experimental condition is usually conducted in duplicate and the mean bioflocculation
activity are recorded for the corresponding response. Various software including Design-Expert
(Stat-Ease Inc., Minneapolis, MN, USA) [10], MODDE (Umetrics, Sweden) [54], Fusion Pro (S-Matix),
and JMP (SAS Institute) [55] could be applied for the model and analyze the data statistically.

4. Factors Affecting Bioflocculant Production

The major factors that affect bioflocculant production include temperature, shaking speed, pH,
inoculum size, cations, and carbon and nitrogen sources.

4.1. Effect of Inoculum Size

Inoculum size contributes immensely to the growth of cell and during the cause of secondary
metabolites production. It has been documented that small inoculum size extends the stationary phase
while larger inoculum size inhibits bioflocculant production by causing drastic overlapping in the
niche of the organism [56]. In the study conducted by Agunbiade et al. [57], inoculum size of 1%
(v/v) resulted in optimal flocculating activity of the bioflocculant produced by Streptomyces platensis.
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In contrast, flocculating activity of 700 u/mL was attained when 4% (v/v) fermentation medium was
used in the bioflocculant produced by Bacillus licheniformis [58].

4.2. Effect of Cations

Cations are very important in bioflocculant production and this has been proven in
literature [59,60]. Cations facilitate the rate of flocculation by neutralizing the charge on the bioflocculant,
thereby enhancing bridges formation between the particles and the bioflocculant [61]. It is worthy to
note that the addition of cations to kaolin clay suspension enhances the size of floc formed, thereby
increasing the rate of sedimentation processes [62]. For instance, optimum flocculating activity
was attained with the bioflocculant produced by Arthrobacter humicola when Ca2+ and Mg2+ were
used [12]. In addition, the bioflocculant produced by Halomonas sp V3a and Bacillus aryabhattai strain
PSK 1 attained their optimum flocculating level when CaCl2 as representatives of divalent cations
was used [63]. Carboxylic functional groups of bioflocculant serve as adsorption sites for metal
ions that promote complexes formation between bioflocculant and clay particles [64]. In another
study, Fe3+ inhibited bioflocculant production while Mg2+, Al3+, Ca2+, K+, and Na+ enhanced better
flocculating activity rate in the bioflocculant produced by Bacillus sp. [65].

4.3. Effect of pH

It has been noted that pH affects the microorganisms, their production of active compounds
and activity [5]. The effect of pH on bioflocculant production has been reported by different
authors. Alkaline medium support higher flocculating activity in protein bioflocculants while
polysaccharide bioflocculants enhances better flocculating activity at a pH range of slightly acidic
to alkaline medium [66]. The pH of the medium tends to have an impact on the surface charge and
charged state of the colloidal particles, thereby affecting the flocculation effect [67]. The pH conditions
for attaining optimum bioflocculant production varies with each organism. For instance, Aspergillus
flavus bioflocculant attained its optimum production at pH 7 [5]. In another study, Terrabacter sp.
thrives well at a pH range of 7–11, attaining its optimum flocculating activity at pH 8 [68]. Furthermore,
bioflocculant produced by Alteromonas sp. was very active at neutral to moderately alkaline conditions
and optimum flocculating activity of 600 U/mL was attained [69].

4.4. Effect of Carbon and Nitrogen Sources

Carbon and nitrogen sources play a vital role in the growth of microorganism, enzymes,
proteins, and nucleic acid production. The requirement varies with different organisms. For instance,
the optimum flocculating activity of 90.1% and the lowest activity of 29% was recorded when
carbohydrate source and starch were used in the bioflocculant produced by Bacillus salmalaya [70].
On the other hand, when sucrose, glucose, lactose, and maltose were used as a single source, flocculating
activity exceeding 60% after 72 h of cultivation were observed. Literature search has revealed that organic
nitrogen sources are easily absorbed by microbial cells. Hence, they are more favourable for bioflocculant
production as compared to inorganic nitrogen sources [71]. Interestingly, some microorganism can
utilize either organic nitrogen sources or their combination to attain optimum flocculating activity [72,73].
A good example is observed in the bioflocculant produced by Aspergillus parasiticus, where sodium
nitrate resulted in optimum bioflocculant production [74]. Contrastingly, when combined with
ammonium sulfate, no bioflocculant was produced. In another study, yeast extract gave the best
flocculating activity when used as an organic nitrogen source in the bioflocculant produced by
Cellulosimicrobium cellulans L804 [75]

5. Characterization of Purified Bioflocculants

The phenol–sulphuric acid method, using glucose as a standard has been adopted in assaying
for total sugar content of bioflocculant [76]. Protein content could be determined by the Bradford
method using bovine serum albumin (BSA) as standard [77]. Additionally, the zeta potential and
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charge density of bioflocculant could be measured according to the method of Pathak et al. [78].
Moreover, neutral sugar, amino sugar, and uronic acid content are usually quantified using standard
methods [79]. The functional group of purified bioflocculant is analyzed with the aid of Fourier
transformer infrared spectroscopy (FTIR). This is achieved by blending the purified bioflocculant
homogeneously with KBr and the spectrum is monitored over the frequency range of 4000–400 cm−1 at
ambient temperature using FTIR spectrophotometer. Furthermore, the molecular weight of purified
fractions of polysaccharides could be analyzed using gel permeation chromatography system coupled
with a specific refractive index. Scanning electron microscope (SEM) is usually employed to observe
the surface morphology of the purified bioflocculant and Energy dispersive X-ray analysis is used
to validate the different elemental compositions of the purified bioflocculant. The heat profile of the
purified bioflocculant is monitored using thermogravimetric analyzer (weight loss versus temperature).
This is usually achieved over a temperature range of 20 to 600 ◦C at a heating rate of 10 ◦C/min under a
constant flow of nitrogen gas.

6. Applications of Actinobacteria in Biotechnology

They have been widely implicated in the production of many novel bioactive compounds like
antitumor agents, antibiotics, enzymes, pigments, immune-suppressive agents, and bioflocculation
materials [20]. They are good microbial transformations of organic compounds and some of the
members of this genus can eventually participate in the bioconversion of wastes into high-value
chemical products. Some of their application are briefly described below

6.1. Antimicrobials

Actinobacteria are best known as an agent that fight multi-drug resistant pathogenic organisms and
antimicrobial compounds producers. The high increase in antibiotic resistance has urgently called for the
screening and search for novel antibiotics with a new mechanism of action. Literature search has affirmed
the genera Streptomyces and Micromonospora as the major genera of actinobacteria responsible for almost
80% of antibiotic production [80,81]. Some of the actinobacteria that possess antimicrobial abilities
are Streptomyces rimosus [82] and Streptomyces parvulus [83]. Antibiotics produced from the bioactive
compounds of actinobacteria can be classified into different classes. Example include aminoglycosides
(kanamycin), anthracyclines (doxorubicin), macrolides (erythromycin), and ansamycins. Furthermore,
some actinobacteria produce more than one antibiotic substance (Streptomyces griesus) and some
antibiotic may be produced by different species of actinobacteria.

6.2. Enzymes

The bioactive compounds produced by genus Actinomycetes are responsible for the production of
many chemical compounds, such as enzymes, antibiotics, nutraceuticals, antitumor agents, plant growth
regulators, and vitamins [26,84]. Different genera of actinomycetes have been documented as the major
sources of industrial enzymes that can be employed in biotechnological applications and biomedical
fields [85]. Actinomycetes have been continuously studied and employed in the production of amylases,
cellulases, proteases, chitinases, xylanases, tyrosinases, perosidaxes, laccasses, and pectinase [86]. It is
worthy to note that actinobacteria enzymes are of great values in biotechnological applications such
as food, industry, fermentation, textile, and paper industries. These enzymes secrets amylases on the
outer part of the cells and it aids in extracellular digestion [87]. Furthermore, the bioactive compounds
produced by Streptomyces avermitilis enhances the ortho-hydroxylation of resveratrol to piceatannol [88].
The applications of other actinobacteria enzymes are illustrated in Table 3.

6.3. Biofuels

Bioconversion of plant materials to sugars and their transformation into other compounds
enhances the growth of a sustainable biofuel industry [89]. Literature search has validated that
the genera Streptomyces, Cellulomonas, Mycobacterium, Propionibacterium, Nocardia, Corynebacterium,
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and Micromonospora are very rich in carbohydrate degrading enzymes (glycoside hydrolase) [90].
Interestingly, the enzymes are important in the production of simple sugars which are subsequently
converted into biofuels and other compounds of economic value. Actinobacteria also play an important
role in detoxification of fuel associated toxic compounds.

Table 3. Selected Actinobacteria and their biotechnological applications.

Use Enzyme Applications

Detergent (laundry and
dish wash)

Protease Protein stain removal

Amylase Starch stain removal

Lipase Lipid stain removal

Cellulase Cleaning, color clarification,
anti-redeposition (cotton)

Mannanase Mannanan stain removal
(reappearing stains)

Starch and fuel

Amylase Starch liquefaction and saccharification

Amyloglucosidase Saccharification

Pullulanase Saccharification

Glucose isomerase Glucose to fructose conversion

Cyclodextrin-glycosyltransferase Cyclodextrin production

Xylanase Viscosity reduction (fuel and starch)

Food (including dairy)

Protease Milk clotting, infant formulas
(low allergenic), flavor

Lipase Cheese flavor

Lactase Lactose removal (milk)

Pectin methyl esterase Firming fruit-based products

Pectinase Fruit-based products

Transglutaminase Modify visco-elastic properties

Baking

Amylase Bread softness and volume, flour
adjustment dough conditioning

Xylanase Dough stability and conditioning
(in situ emulsifier)

Lipase Dough stability and conditioning
(in situ emulsifier)

Phospholipase Dough strengthening

Glucose oxidase Dough strengthening

Lipoxygenase Bread whitening

Protease Biscuits, cookies

Transglutaminase Laminated dough strengths

Animal feed

Phytase Phytate digestibility–
phosphorus release

Xylanase Digestibility

β-Glucanase Digestibility

Beverage

Pectinase De-pectinization, mashing

Amylase Juice treatment, low calorie beer

β-Glucanase Mashing

Acetolactate decarboxylase Maturation (beer)

Laccase Clarification (juice), flavor (beer),
cork stopper treatment

Textile

Cellulase Denim finishing, cotton softening

Amylase De-sizing

Pectatelyase Scouring

Catalase Bleach termination

Laccase Bleaching

Peroxidase Excess dye removal

Pulp and paper

Lipase Pitch control, contaminant control
Protease Biofilm removal

Amylase Starch-coating, de-inking,
drainage improvement

Xylanase Bleach boosting
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Table 3. Cont.

Use Enzyme Applications

Cellulase De-inking, drainage improvement,
fiber modification

Fats and oils
Lipase Transesterification

Phospholipase De-gumming, lyso-lecithin production

Organic synthesis

Lipase Resolution of chiral alcohols and amides

Acylase Synthesis of semisynthetic penicillin

Nitrilase Synthesis of enantiopure
carboxylic acids

Leather
Protease Unhearing, bating

Lipase De-pickling

Personal care

Amyloglucosidase Antimicrobial (combined with
glucose oxidase)

Glucose oxidase Bleaching, antimicrobial

Peroxidase Antimicrobial

L-Asparagine Antitumor

Neuraminidase Antiviral agents

Aminoacylase Regulation of urea cycle

Source: [89].

6.4. Synthesis of Nanoparticles

Actinobacteria are major agents for producing nanoparticles, which exhibit different ranges
of biological properties, namely antibacterial, antifungal, anticancer, anti-biofouling, antiparasitic
and antioxidant. The genera, Streptomyces and Arthrobacter, are representative of actinobacteria that
enhance the development of non-toxic methods of the formation of silver and gold nanoparticles.
Literature search has revealed that 25 isolates of 49 synthesized silver nanoparticles are from the marine
environment [91].

6.5. Bioremediation and Bioflocculation

The bioactive compounds produced by actinobacteria plays a pivotal role in organic carbon
recycling and degradation of complex polymers. In addition, the capability of actinobacteria strains
to produce cellulose and hemicellulose degrading enzymes enhances their potentials in degrading
and solubilization of lignin and lignin related compounds [92]. Degradation of feather wastes was
achieved by the ability of Nocardiopsis sp. SD5 to produce keratinase enzyme [93]. Bioflocculation
involves the process of formation of flocs through extracellular polymeric substances (EPS) produced
by the organisms [94]. This is achieved by secreting EPS, which may be adhesive or cohesive and aid in
the agglomeration of suspended solids that are present in water or wastewaters [95]. Actinobacterial
flocculants are harmless, biodegradable, and free of secondary pollutants; hence, they have been
widely employed in biotechnology [96]. Some of the genera that have been implicated in flocculation
and biotechnology include Streptomyces sp, Arthrobacter sp, Brachybacterim sp, Streptomyces platensis,
and Terrabacter sp. [12,57]. Furthermore, an overview of microorganisms that have been screened for
bioflocculation activity and validated in different field of industrial biotechnology are itemized in
Table 4.
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Table 4. Some of the microorganisms implicated in flocculation and their industrial applications.

Name Source Chemical Composition Flocculating Activity (%) Applications Citations

Bacillus aryabhattai Egyptian Agricultural soils Glycoprotein 92.8% at 50 ◦C and 94.6% at
pH 2.0 N/A [97]

Ruditapes philippinarum Aquaculture Complex heteropolysaccharides 86.7% in deionized water and
91.8% in sea water N/A [98]

Sphingomonas Yabuuchiae Chromotrophic acid
waste water Polysaccharides 0.4% (w/w) kaolin suspensions

over pH 3.9 and 20–80 ◦C Steroid estrogen removal [10]

Alteromonas sp
CGMCC 10612 Surface Sea water Polysaccharides 2575.4 U/mL achieved in a 2-L

fermenter Dye decolorization [69]

Bacillus cereus Marine sponge Polysaccharides 94% F/A in kaolin suspension
synthesis of Ag nanoparticles

and bioremediation of
wastewater

[99]

Bacillus Mucilaginous Mixed activated Sludge Extracellular polysaccharides 90% F/A in kaolin suspension N/A [100]

Bacillus Megaterium Swine waste water
treatment plant Polysaccharides 90.2% in 4 L kaolin

suspension Arsenite removal [101]

Streptomyces sp Mangrove sediments Polysaccharides 99.18% on Nannochloropsis
culture medium Recovery of microalgae [102]

Bacillus cereus Activated sludge Flocs N/A 86.87% Microalgae harvest [103]

Rhodococcus erythropolis Alkaline thermal
pretreated sludge N/A N/A Removal of Pb (II) [104]

Scendesmus quadricauda Algaetech International
Sdn Bhd Glycoprotein

flocculate 86.7% of
Scenedesmus quadricauda cells

in presence of ZnCl2
Harvesting of biomass [105]

Paenibacillus mucilaginosus Soil sample Polysaccharides 97% flocculation on kaolin
clay suspension

Industrial waste water
treatment [106]
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Table 4. Cont.

Name Source Chemical Composition Flocculating Activity (%) Applications Citations

Bacillus sp. XF-56 Marine intertidal Sludge N/A

Up to 93.5% hydrogen and
bioflocculant produced in

marine culture condition and
96.8% in fresh ones

N/A [107]

Bacillus agaradhaerens C9 Alkaline lake sample Polysaccharides Protein &
nucleic Acids 95.29% kaolin suspension

Biofilms formation and
harvesting of

Chlorella minuttssima
[108]

Shinella albus Xn-1 Phycosphere of Microcyctis
aeruginosa 7820 Non proteins & carbohydrate 86.65% Harvest of Chlorella vulgaris

biomass [109]

Panebacillius polymyxa
MBF-79

Recycled activated
sludge samples Glycoproteins 94.7% flocculation was

achieved Removal of arsenic acid [110]

Klebsiella Activated sludge Polysaccharide 93.9% flocculation was
achieved N/A [111]

Pseudomonas aeruginosa
ZJU1

Water sample by a routine
enrichment

Polysaccharide proteins &
nucleic acids N/A Treatment of HABs caused by

Microcystis aeruginosa [112]

Klebsiella sp. TG-1 Waste water of a starchy
factory Polysaccharides 98% kaolin clay Defecating Trona suspension [113]

Bacillus firmus and Bacillus
licheniformis

National collection of
industrial microorganisms Glycoproteins N/A

Decolorization of dye and
remediation of toxic

metal solution
[114]



Appl. Sci. 2020, 10, 7671 12 of 18

7. Conclusions and Recommendations

Microbial bioflocculants are extracellular polymeric substance comprising of polysaccharides,
glycoproteins, and proteins that are usually produced by microorganisms during the process of
secretion [5]. They have been proposed as a potential replacement to traditional and chemical
flocculants (polyaluminum chloride, polyacrylamide and aluminum sulphate) as a result of the
harmless and biodegradability potentials they exhibit. Interestingly, microbial flocculants isolated
from different sources, such as freshwater environment and wastewater sludge have been reported in
literature [68,105]. However, their applications on a large scale medium have been greatly hindered by
weak flocculating activity, poor yield, and the exorbitant cost of production. Hence, there is an urgent
need to isolate and screen potential actinobacteria producing bioflocculant strains from other sources
and optimize their production cost before their application in biotechnology. It is worthy to note that
Nocardiopsis aegypta sp. nov has been isolated from the marine environment and its potential flocculating
ability has been established [115]. However, there is a dearth of information on validating the optimum
culture conditions and confirming the potential application of the strain (Norcadiopsis aegypta) in
biotechnology. Therefore, there is a need for the isolation of actinobacteria strains from different
marine environments, screening for flocculating potentials and validating their application in different
areas of bioflocculation. Furthermore, it would be important to optimize culture and fermentation
conditions using different statistical package tool (response surface model and artificial neural network)
prior to their production and applications on a large-scale medium. In addition, in vivo toxicological
evaluation of marine actinobacteria purified bioflocculants need to be performed on wistar rats before
implementing its industrial practical application on a large-scale medium
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