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ABSTRACT 

In this paper, a five (5) compartmental model is presented to study the transmission dynamics 

of Measles in a population at any point in time. The model is rigorously analyzed to gain 

insight into the dynamical features of Measles and also, optimal control theory is applied to 

give an optimality system which we used to minimize the number of infected individuals and 

propose the most suitable control strategy for the spread of measles. It is shown that the model 

has a diseases free equilibrium which is globally asymptotically stable (GAS). Also, there 

exists a unique endemic equilibrium point which is locally stable whenever the associated 

threshold quantity exceeds (one) unity. We also show that there exists a solution for the 

optimality system. From the result, it was observed that vaccine control strategy is more 

efficient in reducing the number of infected individuals as compared to other control 

strategies. 
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1. INTRODUCTION 

 
Measles is a communicable and deadly viral disease caused by the measles virus, of the genus 

Morbillivirus which belongs to the family paramyxoviridae. This disease can be contacted on a 

close contact with an infected individual via airborne propagules. When an infected individual 

sneezes or coughs, measles is spread through droplet transmission from the nose, throat, and 

mouth of someone who is infected with Measles virus. The infection leads to the development of 

a typical rash /fever illnesses. Measles is preventable by vaccine. Information has it that if 

unvaccinated (unimmunized) people exposed to the virus, more than 90% will contract the 

disease. Measles is highly contagious, when the virus droplets are released into the air, the virus 
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can still remain in the air (and still able to cause infections) for up to two hours after an infected 

person has left a room. Once one had measles and recovered from it, then the person is believed 

to be immune for life against the disease. Also, people who have received two doses of vaccine 

after their first birthday have a 98% likelihood of being immune (that is the probability of having 

measles even when in contact with those infected with measles is about 0.02, which is very low). 

Children when born, receive some forms of  immunity from their mother, but unfortunately, this 

immunity is not complete, and therefore infants are at increased risk of  infection until they 

receive the vaccination at 12 to 15 months of age [1,2,3,27,30 ]. 

 

The typical time from exposure to a person infected with measles to development of the initial 

symptoms is 10-12 days (the range is 7 to 21 days). The rash occurs a few days after the initial 

symptoms (ranges from 7 to 18 days from exposure). The period of infection spans through one 

week and, after which the hosts recover and develop lifelong immunity. Therefore, people can 

only have measles infection once in their lifetime. If the force of infection that is the effective 

contact rate is sufficiently large, high incidence rate would be recorded mostly among the young 

age, and hence measles is a childhood disease. When most people in a community at any point in 

time are not vaccinated, measles outbreak is imminent which poses serious danger 

[1,2,25,26,27,30 ].  

 

Children under the age of one are the most vulnerable to measles (although they have some 

immunity passed from their mother, which is not 100% effective and wane easily); also, people 

who have not received the proper vaccination series; people who received immunoglobulin at the 

time of measles vaccination and people  who had taken outdated, ineffective measles vaccine. 

Malnutrition, concurrent infection, and inadequate case management are the major factors 

responsible for some high mortality rates of measles especially in the tropical Africa. In this 

region, we have heard of about 5%, 10% and some worst situation of 20% reported cases.  

Infection with measles leads to complications in one out of seven cases and is very severe in 

about one out of five thousands cases in developed countries, where there is no adequate case 

management, [1,17,20,21,25,26,30]. 

 

Disease prevention is key to public health. It is always better to prevent a disease than to treat it. 

Unfortunately, in the case of measles there is no specific drug for the treatment of the diseases. 

Though, some physician recommends the use of some pain reliever, giving of enough vitamin A 

and humidification of the air as some of forms of treatment to measles. Vaccines can protect both 

the people who receive them and those with whom they come in contact. Vaccines are 

responsible for the control of many infectious diseases that were once common in so many 

countries around the world, which includes polio, measles, diphtheria, pertussis (whooping 

cough), rubella (German measles), mumps, tetanus, and Haemophilus  influenzae type b (Hib). 

Over the years, vaccines have prevented countless cases of infectious diseases and saved literally 

millions of lives [20,21]. 

 

Also, people most likely to have complications (including death) are those who are malnourished 

or who have weakened immune systems. In most people, the disease produces fever (temperature 

> 101 F [38.3 C]), a generalized rash that last greater than three days, cough, runny nose 

(coryza), and red eyes (conjunctivitis). The complications of measles that result in most deaths 

include pneumonia and inflammation of the brain (encephalitis). Any woman that contract 

http://www.granthaalayah.com/
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measles during pregnancy period may have a miscarriage, a stillbirth, or a preterm delivery. 

There appears to be no risk of having birth defects (unlike an infection with the rubella virus, 

known as German measles) [1,6, 27,30]. 

 

Measles is a highly contagious viral disease that has high mortality rate within few days. 

Although global incidence has been significantly reduced through vaccination, measles remains 

an important public health problem. Measles, the leading vaccine-preventable killer of children 

worldwide, is estimated to have caused 614 000 global deaths annually in 2002, with 50% of all 

global measles deaths occurring in sub-Saharan Africa. The persistence of measles in many 

African countries points to the need to further investigate the dynamics of measles epidemics in 

endemic region [12,15]. Similarly, in 2008, measles killed 164,000 children worldwide. 

However, measles is rarely fatal in the United States. Research shows that this is due to the fact 

that most people are immunized, which results in very infrequent outbreaks. On the other hands, 

Measles cases are increasing in Ireland, with 320 cases reported between August 2009 and early 

2010, and 206 cases were due to the unvaccinated [29,30].  

 

Despite the enormous efforts by the World Health Organization (WHO) and United Nations 

Children’s Fund (UNICEF) at reducing the global burden of measles, it has remained a public 

health challenge. Worldwide, measles is fifth leading cause of death among under-five children 

with an estimated 197,000 deaths in 2007 [21,28]. Measles infection is still prevalent in many 

developing countries especially in parts of Africa and Asia where more than 20 million measles 

cases are reported annually [30]. In the West Africa sub-region, large and recurrent epidemics 

associated with high mortality have occurred in Niger (2003), Nigeria (2004) and Chad (2004) 

[6]. Frequent epidemics continue to occur in countries that have not fully implemented the WHO 

strategy [6,21,25]. In 2010, the Asia continent tops the global list of measles cases with Malawi 

having 118,712 cases followed by China (38,159) cases and India (29,808) cases. The second in 

rank by continent is Europe with Bulgaria leading the continent with 22,004 cases. France was 

ranked eleventh in the world with 5,048 cases and United Kingdom having 443 cases reported. 

In Africa, Zambia top the list with 15,754 cases followed by Zimbabwe and Nigeria with 9,696 

and 8,491 cases respectively. In America, Canada has 99 reported cases and was ranked 63 in the 

global record for measles in that year. Similarly, Australia which was ranked 70 ,has 70 cases 

reported for the year 2010 [31]. While in 2011, there were 222 cases of measles confirmed in the 

United States. [26].   

 

The more children in a community that are vaccinated, the less likely it is that any children, even 

those who have not been immunized, will get sick because there are fewer hosts for the 

infectious agents. This is referred to as “herd” immunity and it is particularly vital with 

extremely contagious diseases such as measles, where immunization of 90 to 95 per cent 

of infants is needed to protect a community from measles epidemics. However, this is not true 

for all diseases, such as tetanus, therefore an individual’s vaccination status is important, not just 

group immunity [7,12,23,29]. Vaccine-preventable diseases have a costly impact, resulting in 

doctor's visits, hospitalizations, and premature deaths. Sick children can also cause parents to 

lose time from work [8].  

 

Many researchers have investigated the nature, characteristics, effect and modes of spread of 

Measles in the societies; these researches are either experimental or theoretical. Also, many 
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mathematical models have been used to gain insight into the transmission dynamics and control 

of Measles spread in human population. The purpose of the current study is to provide a rigorous 

optimality control analysis of a model for the spread of Measles. The model uses standard 

incidence function for the infection rate and some time dependent control variables to obtain an 

optimal system shall be introduce so as to obtain the most efficient control strategy. 

 

The paper is organized as follows. The model is formulated in Section 2, and is qualitatively 

analyzed in Section 3. In Section 4, we introduced some time dependent control variables and 

obtained the optimality system. Section 5, we carried out the numerical simulations while section 

6 is the discussion of all the results of both the mathematical analysis and the numerical 

simulations. 

 

2. MODEL FORMULATION 

 

Following [3,15,17,18], the total homogeneously-mixing population at time t, denoted by N(t), is 

sub divided into mutually-exclusive compartments of susceptible (S(t)), exposed/latent (E(t)), 

infectious (I(t)), isolated infectious  (J(t)) individual and recovered (R(t)) individuals, so that 

N(t) = S(t) + E(t)  + I(t)+J(t) + R(t) : 

 

The susceptible population is increased by the recruitment of people (either by birth or 

immigration) into the population (all recruited individuals are assumed to be susceptible), at a 

rate . Also, the susceptible population increases by the recovered individuals. Anyone who has 

had measles is believed to be immune for life. People who have received two doses of vaccine 

after their first birthday have a 98% likelihood of being immune. This population is decreased by 

infection, which can be acquired following effective contact with infectious individuals only, at a 

rate   given by 

 
)(

))()((

tN

tJtI jd 



                                                                                      (2.1) 

In (1),   represents the effective contact rate (i.e., contact capable of leading to measles 

infection), d is a modification parameter that compares the transmissibility of the disease. Here, 

we also assume that 10  d . Similarly, 10  j  , 
j is modification parameter that 

accounts for the reduced transmissibility of infectious individuals in the isolated class. Finally, 

this population decreases by natural death (at a rate  ). Thus, the rate of change of the 

susceptible population is given by 

 

)()()(
)(

tStStR
dt

tdS
                                                               (2.2) 

The population of the exposed individuals increases when individuals from the susceptible class 

are in contact with individuals with measles but have not been showing the symptoms of the 

diseases. The population of exposed individuals is decreased by the progression of exposed 

individuals to infectious measles stage i.e a stage when individuals has started showing 

symptoms of the diseases (at a rate  ) . It is pertinent to mention here that    depends greatly 

on the level of individuals immunity which has been acquire mostly during birth via series of 
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immunization program. Again, the population of the exposed individuals is further reduced by 

natural death (at the rate  ). Thus, 

 )()()(
)(

tEtS
dt

tdE
                                                                             (2.3) 

The population of the infectious individuals is increased by Progression of the exposed 

individuals into an active infectious stage (at the rate  ) . This population is decreased  (at a rate 

 ), when infected individuals are treated and recovered from the disease. Also, the population of 

the infectious individuals are decreased by natural death (at the rate  ), disease-induced 

mortality (at a rate  ) and isolation (at the rate  ) .  Hence, 

 )()()(
)(

1 tItE
dt

tdI
                                                                              (2.4) 

We also assume that among those infectious individuals (those that reported at the hospital for 

treatment), some were isolated for proper monitoring of treatment. So, the population of the 

isolated infectious individuals is increased by Progression of the infectious individuals into 

isolated infectious class (at the rate  ) . This population is decreased (at a rate 2 ), when 

isolated infected individuals are treated and recovered from the disease. Also, the population in 

this class are decreased by natural death (at the rate  ) and disease-induced mortality (at a rate 

j ).  Hence, 

 )()()(
)(

2 tJtI
dt

tdJ
j                                                                                 (2.5) 

Recovery here means recovery from the disease. The population of recovered individuals is 

increased by the recovery of infectious individuals and isolated infectious individuals after 

treatment. This population is decreased by removing those who have recovered from the diseases 

to the susceptible category since individuals who recovered from measles diseases is assumed to 

have permanent immunity to the diseases because from the literature, individuals can only have 

the diseases once in life time. Again, the recovered individuals population decreased by natural 

death (at the rate  ).  

Therefore, 

RRtJtI
dt

tdR
  )()(

)(
21                                                                        (2.6) 

Thus, in summary, the measles dynamics transmission model, is given by the following system 

of non-linear differential equations, 

)()()()(
)(

)()()(
)(

)()()(
)(

)()()(
)(

)()()(
)(

21

2

1

tRtRtJtI
dt

tdR

tJtI
dt

tdJ

tItE
dt

tdI

tEtS
dt

tdE

tStStR
dt

tdS

j





















                                                            (2.7) 
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Table 1: Description of parameters of the model (2.7). 
Parameters Descriptions 

  Effective contact rate for Measles infection 

  Per capita natural mortality rate 

  Recruitment rate into the population 

  Progression rate to infectious class 

21,   Treatment rate for  infectious and isolated individuals  respectively 

j ,  Measles induced mortality rate for Infected class and Isolated infected 

class 

  Recovery rate for individuals 

d  
j  Modification parameters 

  Isolation rate from infected class 

      Susceptible 

Individuals: S(t) 

     Exposed 

Individuals: E(t) 

   Infected 

Individuals: I(t) 

   Recovered 

Individuals: R(t) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagram of the model (2.7) 

 

 

 

   Isolated 

Individuals J(t) 
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3. ANALYSIS OF THE MODEL 

 

Theorem 3.1: The closed set 








 




NRJIESD :),,,,( 5  is positively-invariant and 

attracting with respect to the model equations (2.7). 

Proof.:  Consider the biologically-feasible region, D, defined above. The rate of change of the 

total population, obtained by adding all the equations of the model (2.7), is given by 

JIRJIES
dt

dN
j                                               (3.1) 

And since )()()()()()( tRtJtItEtStN  ; (2.8) implies that  

)()()(
)(

tJtItN
dt

tdN
j                                                             (3.2) 

Therefore, 0
)(


dt

tdN
 whenever the sub total population 




)(tN  Hence, for all time 0t , all 

the solutions of the model with the initial conditions in D  will remain in D . Thus, the 

biologically feasible region D  is positively- invariant and attracting. This completes the proof. 

In the region D, the model can be considered as being epidemiologically and mathematically 

well-posed [2,3,4,16]. 

 

3.1.Disease-free equilibrium (DFE)  
 

The model (2.7) has a DFE, obtained by setting the right-hand sides of the equations of the 

model to zero, given by 









 0,0,0,0,),,,,( 000000



 RJIES                                                               (3.3) 

The stability of the DFE, 0 , will be analyzed using the next generation method (see [2,9]). The 

non-negative matrix F (of the new infection terms) and the non-singular matrix V (of the 

remaining transfer terms) are given, respectively, by 

 























0000

0000

0000

00 jd

F



                                                                                        (3.4) 

 




























421

3

2

1

0

00

00

000

K

K

K

K

V






 

Where )()()(),( 323121   KandKKK j  
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The associated reproduction number, denoted by 0R  is given by )( 1

0

 FVR  , where 

denotes the spectral radius (dominant eigenvalue in magnititude) of the next generation matrix 

)( 1FV . 

It follows that 

321

3

0

)(

KKK

K
R

jd  
                                                                                                    (3.5) 

 

Hence, the result below follows from Theorem 2 of [9] 

 

Lemma 3.1. The DFE of the model equation (2.7), given by (3.3), is locally stable if 10 R , and 

unstable if 10 R . The threshold quantity, 0R , is the reproduction number for the model. It 

measures the average number of new Measles infections generated by a single infectious 

individual in a population where some of the infected individuals have been immunized. The 

epidemiological implication of Lemma 3.1 is that Measles spread can be effectively controlled in 

the community (when 10 R ) if the initial sizes of the sub- populations of the model are in the 

basin of attraction of the disease-free equilibrium 







 0,0,0,0,0




  

Epidemiologically, if 10 R , the disease will dies out in the community and if 10 R , the disease 

spreads in the population.  Hence, the basic Reproduction numbers turned out to be an important 

factor in determining the transmission dynamics of any infectious diseases. 

 

3.2.Stability Analysis of the DFE 

 

Here, the stability property of the DFE of model (2.7) will be explored. At a steady-state,

)()()()()()( * tRtJtItEtNtS  , hence the stability of 0  can be established by 

considering the following mass action equivalent of the model (2.7) given as; 

)()()()(
)(

)()()(
)(

)()()(
)(

)()())()()()()((
)(

21

2

1

*

tRtRtJtI
dt

tdR

tJtI
dt

tdJ

tItE
dt

tdI

tEtRtJtItEtN
dt

tdE

j

















  (3.6)                                                              

And 
)(

))()((

tN

tJtI jd 



  

Here, the invariance region is given by 

 })()()()(:))(),(),(),({( *4* tNtRtItEtRtJtItED  
                               (3.7) 

Theeorem 3.2: The DFE of the model (3.6), given by (3.3) is Global Asymptotically Stable 

(GAS) if 10 R . 
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Proof: The equations (3.6) can be re-written as 





















































R

J

I

E

GGG

dt

dR

dt

dJ

dt

dI

dt

dE

)( 321                                                                                        (3.8) 

Where the matrices 21, GG  and 3G   are given by; 























0000

0000

0000

00

1

jd

G



      




























)(0

0)(0

00)(

000

21

2

1

1

2







j

K

G  

 And 

  























0000

0000

0000
3



G  

Since matrix 3G  is non-negative thus,  





























































R

J

I

E

GG

dt

dR

dt

dJ

dt

dI

dt

dE

)( 21                                                                                                             (3.9) 

If 10 R  then 1)(
1

21 


GG  (from the local stability result given in lemma 3.1), which is 

equivalent to 21 GG   having all its eigenvalues in the left-half plane [20]. It follows that the 

linearized differential inequality system (3.6) is stable whenever 10 R . Consequently, by 

comparison theorem [20], it follows that )0,0,0,0()(),(),(),(( TRtJtItE . Hence, since D  is 

positively-invariant, it follows that DFE is GAS in 10

* RifD . 

 

3.3.Existence of endemic equilibrium point (EEP) 
 

In this section, the possible existence and stability of endemic (positive) equilibria of the model 

(2.7) (i.e., equilibria where at least one of the infected components of the model is non-zero) will 

be considered. 

http://www.granthaalayah.com/


[Adewale et. al., Vol.4 (Iss.5): May, 2016]                                                ISSN- 2350-0530(O) ISSN- 2394-3629(P) 

                                                                                                                                           Impact Factor: 2.532 (I2OR) 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [169-188] 

Let ),,,,( *****

1 RJIES  represents any arbitrary endemic equilibrium of the model equation 

(2.7). Solving the equations of the system at the steady-state gives, 

)(

)(

)(

)(

**

21*

2

*
*

1

*
*

**
*

*

*
*








































JI
R

I
J

E
I

S
E

R
S

j

                                                                                                               (3.10)      

The expression for   defined in (3.10) above, at the endemic steady-state, denoted by  

)(

))()((

tN

tJtI jd 



                                                                                                             (3.11)             

We re-write this in terms of **S  as follows; 

**

3

4321

**

2

421

**

1*

**

2

321

**
*

**

1

21

**
*

1

**
*

SP
KKKK

S

KKK

S
R

SP
KKK

S
J

SP
KK

S
I

K

S
E




















                                                                                       (3.12)        

Where, )()()(),( 323121   KandKKK j
 

and 

4321

2

421

1
3

321

2

21

1

KKKKKKK
P

KKK
P

KK
P













                                                                                                      (3.13)             

Substituting the expressions in (3.12) with (3.13) into (3.11) gives 

)()( 21

****

3

**

2

**

1

1

**
** PPSSPSPSP

K

S
S jd 


                                                 (3.14)            

Dividing each term in (3.14)  by **S (and noting that at endemic steady-state 0** S ) gives 
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)(1 21

*

4 PPP jd    

Where 0
1

321

1

4 PPP
K

P  . 

Thus, 
*

0

321

3*

4

)(
1 R

KKK

K
P

jd






  

Hence,  

0
1

4

*

0* 



P

R
                                                                                                               (3.15)      

Whenever 10 R .    

The components of the unique endemic equilibrium ( 1 ) can then be obtained by substituting the 

unique value of * , given in (3.15), into the expressions in (3.10). Thus, the following result has 

been established. 

 

3.4.Local stability of EEP 
 

The local stability of the unique EEP, 1 , will now be explored for the special case where the 

disease-induced mortality is negligible (i.e. 0 j ), Setting 0 j  in the model (2.7) 

shows that 

),(
)(

tN
dt

tdN
                                                                                                          (3.16) 

 Hence, it follows from (3.16) that *)( NtN 



  as t : Further, using the substitution 

RIENS  *   (and noting that 0 j ) in the model equation (2.7) gives the following 

reduced model 

                                                        

)()()()(
)(

)()()(
)(

)()()(
)(

)()(
)(

))()()()()())(()(()(

21

2

1

*

*

tRtRtJtI
dt

tdR

tJtI
dt

tdJ

tItE
dt

tdI

tE
tN

tRtJtItEtNtJtI

dt

tdE jd





















                          (3.17) 

 

So for the reduced model (3.15), the associated reproduction number denoted by 0
*R  is given by 

         
321

3
0

*
)(

KKK

K
R

jd  
                                                                                                     (3.18) 

Using the same approach as in section 3.3, it can be shown that the reduced model equation 

(3.17) has a unique endemic equilibrium given by 01  j  whenever 10
* R . 
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The epidemiological implication of this is that once there is endemic situation of measles in a 

community, the diseases will persist in that community whenever the associated reproduction 

number 10
* R . Hence to avoid the endemic situation we should find a means of keeping the 

associated reproduction number 0
*R  less than unity. 

 

4. MATHEMATICAL ANALYSIS OF OPTIMALITY OF THE SYSTEM 

 

In this section, we provide the mathematical analysis of the possible control strategy that will 

help the public health practitioners achieved the best strategy in the control of the spread of 

measles in the society having in mind the condition obtained in the previous section, that is there 

will be an endemic situation whenever the reproduction number is greater than unity. In order to 

derive the necessary conditions for these optimal control variables, we now introduce time 

dependent preventive measures ),( 21 uu  and treatment )( 3u  efforts as control strategy for the 

spread of measles. So the model equation (2.7) becomes: 

)()()()1()()1(
)(

)()1()()()(
)(

)()}1()1{(()()()(
)(

)()()()1(
)(

)()()1()(
)(

33

3

32

1

1

tRtRtJutIu
dt

tdR

tJutJtI
dt

tdJ

tIuutItE
dt

tdI

tEtSu
dt

tdE

tStSutR
dt

tdS

j





















                                                       (4.1) 

Let the function 10 1  u  denote the control strategy for the use of vaccine as at time due, while 

10 2  u   represents the effectiveness of educating the society of the menace of measles. 

Again, we let  30 u  , )10(    represent the control on treatment where   is the drug 

efficacy used for the treatment. Since treatments cannot be continued infinitely over period of 

time because of the negative side effect, so for our control classes we choose measurable 

functions which is defined on a fixed interval that satisfy 1)(0 iii btua   for i=1,2,3. All 

other parameters is as defined in the model (2.1) and (2.7). 

 

4.1.Existence of an Optimal Control Pair 
 

Following the results of Fleming and Rishel in[10] and in Hattsf and Yousfi [12,13], we obtained 

the existence of an optimal control pair for the model (4.1). 

Theorem 4.1:Given the control model (4.1), then there exists an optimal control pair 

Uuuu
iu

 ),,(
*

3

*

2

*

1  such that  ),,(),,( 321
,,

*

3

*

2

*

1 *
3

*
2

*
1

uuuJMaxuuuJ
uuu

  

Proof: To use an existence results in [10], we need to verify the following properties of the 

model; 

(1) The set of controls and corresponding state variables is nonempty 

(2) The control U set is convex and closed 

http://www.granthaalayah.com/


[Adewale et. al., Vol.4 (Iss.5): May, 2016]                                                ISSN- 2350-0530(O) ISSN- 2394-3629(P) 

                                                                                                                                           Impact Factor: 2.532 (I2OR) 

Http://www.granthaalayah.com  ©International Journal of Research - GRANTHAALAYAH [169-188] 

(3) The right hand side of the state system is bounded by a linear function in the state and control 

variables 

(4) The integrand of the objective functional is concave on U 

(5) There exist constants 0, 21 PP  and 1  such that the integrand ),,,( 321 uuuIL  of the 

objective functional satisfies 2
2

3

2

2

2

112321 )(),,,(



uuuPPuuuIL   

To check if the conditions above are satisfies, we use the result by Hattaf and Yousfi [12,13] and 

Lukes [18] to give the existence of solutions of the model (4.1) with bounded coefficients which 

gives the first condition. We note that the solution are bounded and by definition, the control set 

),,( 321 uuu  is convex and closed, therefore condition 2 is satisfies. We note that the solution are 

bounded and positive and since our state system is bilinear in 321 ,, uuu , hence the right hand side 

of model (4.1) satisfy condition 3. Also, we note that the integrand of our objective functional is 

concave, hence the fourth condition is easily verified. Also we have the last condition needed 

)(),,,(
2

3

2

2

2

112321 uuuPPuuuIL   

Where 2P  depends on the upper bound on I and 01 P  since 0,, 321 AAA . Since all these five 

conditions have been verify to hold, we therefore conclude that there exists an optimal control 

pair. This completes the proof. 

 

4.2.Optimality System 

 

The Objective functional to be minimized is given as: 

dtuAuAuAaIuuuJ

ft

)(),,(
2

33

2

22

0

2

11321                                                             (4.2) 

Here the constants 321 ,,, AAAa  are all positive weights to balance the size of the terms. 
ft  is the 

final time of interest while zero(0) is the initial time. The objective here is to minimize the 

number of infectious individuals I(t), while minimizing the cost of control ),(),),( 321 tututu . 

We therefore seek optimal control pair ,,,
*

3

*

2

*

1 uuu  such that: 

 UuuuuuuJMinuuuJ
uuu

 ),,(/),,(),,( 321321
,,

*

3

*

2

*

1 *
3

*
2

*
1

                                       (4.3) 

Where  3,2,1]1,0[],0[,,/),,( 321  iforttbuameasurableisuuuuU fiiii
is the control 

set. 

The term aI is the cost of infection while 
2

33

2

22

2

11 ,, uAuAuA   are the costs of vaccination at the 

due time, education/ campaign awareness and treatment efforts respectively. Now, we obtain the 

optimal control pair using Pontryagin’s maximum principle [24]. This principle converts 

equations (4.2) and (4.3) into a problem of minimizing pointwise a Hamiltonian H with respect 

to ),,( 321 uuu . So we have: 
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)]()()()1()()1[(

)]()1()()()([

)]()}1()1{(()()()([

)]()()()1[(

)]()()1()([

33

3

32

1

1

2

33

2

22

2

11

tRtRtJutIu

tJutJtI

tIuutItE

tEtSu

tStSutRuAuAuAaIH

R

jJ

I

E

S





















                             (4.4) 

Theorem 4.2: Given an optimal control ,,,
*

3

*

2

*

1 uuu  and solutions  ***** ,,,, RJIES  of the 

corresponding state system (4.1) that minimizes the objective functional ),,( 321 uuuJ over U, 

there exists adjoint variables RJIES  ,,,,  satisfying 

RS
R

RjJEjSj
J

RJI

IEdSd
I

IE
E

ES
S

dt

d

utJutSutSu
dt

d

uuu

tSutSua
dt

d

dt

d

uu
dt

d

















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)1()()]1()[(])()1()()1[(

)1()]1()1[(

)(])()1()()1[(

)(

)1(])1[(
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   (4.5) 
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*
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1 ,, uanduu  satisfying the optimality condition; 
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                                                (4.6) 

Proof: Following Pontryagin’s maximum principle, we obtained the standard form of the adjoint 

equations and tranversality conditions by differentiating the Hamiltonian function with respect to 

states S, E, I, J, and R respectively which is evaluated at the optimal control function 321 ,, uuu  

 So we re-write the adjoint system as follow: 
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With tranversality conditions 0)()()()()(  fRfJfIfEfS ttttt                            (4.8) 

On the interior of the control set and since 1)(0 iii btua   for i=1,2,3 we obtain; 
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                                                             (4.9) 

Therefore, 
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By standard control arguments involving the bounds on the control variables, we have 
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Similarly, we have 
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Again, we also have 
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This completes the proof.                                                                         

The optimality system consists of the state system coupled with the adjoint system with the 

initial and tranversality conditions together with the characterization of the optimal control pair. 
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Substituting (4.6) into (4.1) we obtained the following optimality system; 
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Due to the prior boundedness of the state and adjoint functions and the resulting Lipschitz 

structure of the ordinary differential equations, we can obtain the uniqueness of the optimal 

control for small
ft , following technique from [24]. The uniqueness of the optimal control 

follows from the uniqueness of the optimality system (4.10). There is a restriction on the length 

of time interval in order to guarantee the uniqueness of the optimality system. This smallness 

restriction of the length on the time is due to the opposite time orientations of the optimality 

system; the state problem has initial values and the adjoint problem has final values. This 

restriction is very common in control problems (see[5,19]). 

 

5. NUMERICAL SIMULATIONS 

 

In order to verify the best control strategy to be adopted in the control of measles disease, the 

numerical simulations is analyzed by using finite differencing method using the following set of 

parameter values: 

Table 2: Parameter value 

Parameters Values 

1  0.8 

2  0.8 

  0.2 

  0.09 
  0.1 
  2000 

  0.1 

  0.1 
  0.01 
  0.2 
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Figure 1: Optimal control graph for vaccine         Figure 2: Optimal control graph for education

   
Figure 3: Optimal control graph for the efficacy of drug    Figure 4: Optimal control graph for the  

                             combination of three strategies 
             

6. DISCUSSION OF RESULTS 

 

We presented and analyzed five (5) compartmental models which incorporated isolated infected 

individual during treatment so as to gain insight into the measles infection transmission 

dynamics. It was shown that the disease free equilibrium is locally asymptotically stable 

whenever 10 R  and unstable whenever 10 R . We also showed that an endemic situation exists 

whenever 10 R . 

 

Figures 1, 2 and 3 show the optimal control graph of vaccine, education/campaign and efficacy 

of drug respectively. In each case, there is reduction in the number of measles infected 

individuals. Also, figure 4 shows combination of the three controls in order to know the best 

control. It was observed from figure 4 that vaccine has a pronounced effect on the control of 
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measles as compared with other two controls, in the sense that fewer people would be infected if 

vaccine is administered.  

 

7. CONCLUSION 

 

The results above show that vaccine control strategy yields a better result over treatment of the 

disease and Education/campaigning, which implies that administering vaccine efficiently plays a 

vital role in reducing dynamical spread of measles. Vaccination of susceptible individuals 

reduces the dynamical spread of measles in the environment, thereby reducing those that will be 

infected. In conclusion, timely given of vaccine should be adopted as best control strategy 

against the dynamical spread of measles.    
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