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A B S T R A C T

The main aim of the present study is to investigate the capabilities of four robust machine learning method -
the Kernel Extreme Learning Machine (KELM), Adaptive Regression Spline (MARS), M5 Model Tree (M5Tree),
and Gene Expression Programming (GEP) model in predicting specific heat capacity (SHC) of metal oxide-based
nanofluids implemented in solar energy application. Sets of 1180 data of different metal oxide-based nanofluids
containing Al2O3, ZnO, TiO2, SiO2, MgO, and CuO dispersed in various base fluids were collected from reliable
literature to provide the predictive model of SHC of nanofluids. The volume fraction, temperature, SHC of the
base fluid, and mean diameter of nanoparticles were used as an input variable to predict nanofluids' SHC as the
output variable. The artificial intelligence (AI) models were validated using several statistical performance cri-
teria, graphical devices, and conventional models. The results obtained from all datasets demonstrated that the
KELM model significantly outperformed the MARS, M5Tree, and GEP model in predicting the SHC of nanofluid.
Moreover, the sensitivity analysis showed that the mean diameter of the nanoparticle and SHC of the base fluid
have the most considerable impact on estimating the SHC of metal oxide-based nanofluids.

Nomenclature

CPBase

Specific heat capacity of base fluid (J/K.g)
CPnf

Specific heat capacity of nanofluid (J/K.g)
CPp

Specific heat capacity of nanoparticle (J/K.g)
C∗

Mallows Coefficient
RD

Relative deviation
Dp

Particle diameter, nm
IA

Index of agreement

m
Mass (gr)

MAPE
Mean absolute percentage error

MSRE
Mean Square Root Error

LMI
Legates-McCabe’s Index

Pc
Pearson correlation coefficient

Pr
Prandtl number

heat transfer rate
R

Correlation coefficient

Abbreviations: CFAE, Cumulative Frequency of Absolute Relative Error; EG, Ethylene glycol; GC, Glycerol; PG, propylene glycol; RD, Relative Deviation; SHC, Specific heat capacity;
W, Water.
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Re
Reynolds number

RMSE
Root mean square error (J/K.g)

RSS
Residual sum of squares

StDev
Standard deviation

T
Temperature, (°K)

Greek

α
Thermal diffusivity (m2/s)

ϕ
Nanoparticle volume fraction (%)

ρnf
Bulk fluid density, gr/cm3

ρnp
Density of the nanoparticles, gr/cm3

ρbf
Density of the base fluid, gr/cm3

κ
Thermal conductivity (W/m.K)

Subscripts

bf
Base fluid

i
Nanoparticle ID

nf
Nanofluid

np
Nanoparticle

p
particles

ω
nanoparticle mass fraction

1. Introduction

Heat accounts for about 70 % of the total energy produced directly
and indirectly [1]. Therefore, the optimization of energy consumption
can be achieved with the aid of heat exchange systems. Over the years,
thermal fluids have proven to be the best tool for minimizing energy
loss in heat exchange systems. The search for improved heat transfer in

thermal installation led to the emergence of nanofluids. Nanofluids are
homogenous suspensions of nanoparticles in conventional fluids (i.e.,
water, ethylene glycol, oil, etc.) [2,3]. Nanofluids are characterized by
upgraded thermophysical properties like thermal conductivity, specific
heat capacity, viscosity, and density [3–6]. The tiny dimension and
large surface area to volume proportion of the nanoparticles are respon-
sible for enhancing the nanofluids' thermal conductive [7]. Moreover,
nanofluids can navigate effortlessly in flow-channels with lower parti-
cle momentum and transmit heat at an improved rate compared to stan-
dard fluids [8]. Many researchers summarized the finding of the avail-
able literature on different aspects of nanofluids: thermophysical prop-
erties [9–11], effects of various parameters on the stability of nanoflu-
ids [12,13], different approaches to simulate the fluid flow and heat
transfer of nanofluids [14–16], and applications of nanofluids [17–21].
Nanofluid has received tremendous interest from researchers over the
years prompting series of findings and investigations into its unique
properties and possible applications. One central area of influence is
the energy-saving applications characterized by nanofluid's ability to
transfer heat effectively, thereby saving energy cost and expanding the
annual market size of nanofluid-based applications to an astronomical
value of over 2 billion dollars [22].

Essential to nanofluids' formation is the suspended nanoparticles,
which can be made of metals, non-metals, metallic-oxide, and other
compounds [23]. Of all the various forms of nanofluids, metal-oxide
based nanofluids are very easy to produce, chemically stable, cost less,
and settles easily during production. Hence, they are preferable for
use in many technological applications. Notable metal-oxide nanopar-
ticles include CuO [24–26], Al2O3 [27–29], SiO2 [30–32] and TiO2
[30,33]. Several solar energy applications like the solar collectors fea-
tured metal-oxide based nanofluids for it helps to enhance the opti-
cal characteristics of the collector. Notable metal oxides nanofluids like
Al2O3-water, ZnO-water, and MgO-water are used in Tubular solar col-
lectors [34], ZnO-PG-water nanofluid is employed in DASC [35], Al2O3
nanofluid [36], and CuO-water nanofluid [37] are used in flat plate
solar collectors. Some of the most common applications of metal ox-
ide-based nanofluids in energy systems are depicted in Fig. 1.

Many researchers have examined the SHC of various nanofluids and
evaluated the factors affecting it. The nanofluid’s SHC depended on
many physicochemical properties like nanoparticle dimension, volume
fraction, and SHC. Besides, the base fluid SHC, temperature, and type
can affect the SHC of the nanofluid [38]. Some of the experimental re-
search on metal-oxide based nanofluids’ SHC are presented in Table 1.

In as much as empirical models have offered an alternative to ex-
perimental investigation with regards to the quantitative determination
SHC of nanofluid, their accuracy has been affected by several underly-
ing factors such as the theoretical assumptions governing the relation-
ship between the variables, specificity, and incomplete description of

Fig. 1. Different applications of metal-oxide based nanofluids in energy systems.
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Table 1
Experimental investigation of metal-oxide based nanofluids Specific heat capacity (SHC).

Nanofluids Base fluid Studied factors Equipment Reference

Al2O3 Water- EG Nanoparticle
volume
fraction,
temperature

Micro DSC II
micro-
calorimeter

Barbes et
al. [38]

CuO Water-EG Nanoparticle
volume
fraction,
temperature

Micro DSC II
micro-
calorimeter

Barbes et
al. [39]

Al2O3,
ZnO, SnO

Water-EG, water Nanoparticle
volume
fraction,
temperature

Unspecified Vajjha et
al. [40]

Al2O3 Water-EG Nanoparticle
volume
fraction,
temperature

Differential
scanning
calorimeter
(DSC)

Elias et
al. [41]

TiO2,
Al2O3

DI-water, EG,
Engine-oil

Nanoparticle
volume fraction
and type, base
fluid type

Double-hot
wire
technique

Murshed
et al.
[42]

Al2O3 Water Nanoparticle
volume fraction

Differential
scanning
calorimeter
(DSC)

Zhou et
al. [43]

Metal
oxides

Poly-a olefin,
mineral oil, EG,
W-EG, and
calcium nitrate
tetrahydrate

Nanoparticle
mass fraction,
the heat
capacity of the
base fluid

Differential
scanning
calorimeter
(DSC)

Starace et
al. [44]

TiO2,
Al2O3

Water, EG Nanoparticle
concentration,
temperature

Differential
scanning
calorimeter
(DSC)

Nieh et
al. [30]

Al2O3 Water Nanoparticle
volume
fraction,
temperature

Differential
scanning
calorimeter
(DSC)

Heyhat et
al. [45]

Al2O3,
CuO, SiO2

PG-W(60:40) Nanoparticle
volume
fraction,
temperature

Differential
scanning
calorimeter
(DSC)

Hanley et
al. [46]

SiO2 EG, EG-GC, and
EG-GC

Nanoparticle
volume fraction

differential
scanning
calorimeter
(DSC1,
Mettler-
Toledo)

Akilu et
al. [47]

the anomalous nature of nanofluids. Given those mentioned above,
computational intelligence techniques such as machine learning (ML)
methodologies are employed because they offer a better estimate with
a higher degree of accuracy [48–50]. Over the years, ML models have
successfully predicted several nanofluid thermo-physical properties like
viscosity [4], thermal conductivity [51], and even SHC [52–54] by
modeling experimental data using artificial neural networks (ANN) [55]
and support vector regression (SVR). In general, ML model design for
nanofluids involves the training of experimental data with its physical,
chemical, and environmental properties as input features and the ther-
mophysical property as the target variable so that the ML algorithm
of choice can capture the patterns in the data and establish a model
structure that can be tested with another group of a dataset to predict
a particular thermophysical property [56–58]. Alade et. al. [53] was
the first to develop an ML model that predicted the SHC of metal-ox-
ide based nanofluids. They used hybrid Genetic algorithm-Support vec-
tor regression in estimating the SHC of Al2O3/water nanofluid. Besides,
machine learning models have been deployed to estimate the SHC of
metal oxide-based nanofluids. Such studies include the application of

SVR-based techniques for predicting SHC of CuO-based nanofluids
[59,60], Al2O3-based nanofluids [53,60,61], SiO2 -based nanofluids
[61], and TiO2-based nanofluids [61]. Moreover, Jamei et al. [62] pro-
vided an accurate Gaussian process regression (GPR) model for the pre-
diction of the SHC of nanofluids. Recently, the multivariate adaptive
regression spline (MARS) gave a successful estimation of the thermal
conductivity of metal oxide-based nanofluids [63] and dynamic vis-
cosity [64] of nanofluids. Just recently, the M5 model tree (M5Tree)
was used to model the dynamic viscosity [65], thermal conductivity
[58], and predict the Nusselt number and output temperature of CuO
based nanofluid [66]. Similarly, Gene expression programming (GEP)
was used to estimate the viscosity of Newtonian nanofluids [58] and
predict the thermal conductivity of CuO and Al2O3 based nanofluids
[67]. None of these four machine-learning methodologies has been uti-
lized for modeling and estimating the SHC of nanofluids to the best
of our knowledge. In this study, the Kernel extreme learning machine
(KELM) technique, as the main novelty of the current study, was imple-
mented compared to the MARS, M5Tree, and GEP to predict the SHC of
metal oxide-based nanofluids. Various statistical performances, Graphi-
cal tools, and physical trend examinations were utilized to validate and
evaluate the AI models. Furthermore, a qualitative response assessment,
robustness measurement, and a comprehensive sensitivity analysis were
carried out for SHC of metal oxide nanofluids predictive models.

2. Empirical Model of SHC and background

Specific heat capacity (SHC) of nanofluids can be described as a mea-
sure of the nanofluid's heat retentive property. Hence, it defines the ther-
mal behavior of the nanofluid. Moreover, the heat capacity measure-
ment can facilitate the determination of other thermal related quantities
such as the thermal diffusivity, total heat transfer rate, heat exchanger
effectiveness, and Nusselt number [38,47,68–72] as shown in the gov-
erning equations 1 - 4. Furthermore, the SHC is a critical parameter nec-
essary for the accurate design and assembly of heat management appli-
cations and heat transfer systems to reduce energy loss and maximize
energy conservation [73]. Hence, it is crucial that the SHC is accurately
determined to ensure that the parameters in equations 1 – 4, which de-
pend on the SHC, are correctly obtained. The following equations 1 – 4
express the dependence between thermal related quantities of thermal
diffusivity, total heat transfer, heat exchange effectiveness, Nusselt num-
ber, and the specific heat capacity as:

(1)

α, κ, ρ, Cp are thermal diffusivity, thermal conductivity, density, and spe-
cific heat capacity, respectively.

(2)
are total heat transfer rate, fluid mass flow rate, and tempera-

ture change, respectively.

(3)

C*, Cmin, Cmax, ε, NTU, U, and A are heat capacity ratio, the minimum
heat capacity rates, the maximum heat capacity rates, heat exchanger
effectiveness, number of transfer units, overall heat transfer coefficient,
and heat transfer surface area, respectively.

(4)

Nu and Pr are Nuselt number and Prandtl number, respectively.
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Based on the number of factors capable of varying the SHC of
nanofluids, conducting experimental findings can be laborious if we
have to consider individual factors or a combination of factors, thereby
creating an unwanted delay in measuring SHC [74]. Moreover, the high
cost of materials and experimental set-up for nanofluids experiment can
cause delays to the rapid quantification of the specific heat capacity
[75]. Researchers have developed empirical models as an alternative
to experimental investigations in the face of inadequate experimental
resources. These models are based on the theoretical understanding of
nanofluids' SHC and its dependence on the factors that govern their be-
havior. There are two main proposed theoretical models based on the
mixing theory for ideal gas mixtures and the first law of thermodynam-
ics. Hence, they are described as the mixing rule model [76] and the
thermal equilibrium model [77] (also known as model 1 and model 2,
respectively) [78–80]. They are the two notable models that have esti-
mated nanofluids' specific heat capacity with a high degree of accuracy.
The mixing model, which was proposed by Pak and Cho [78] as a result
of unavailable experimental data, established a relationship between the
SHC of nanofluid, nanoparticles, and base fluid is expressed as follows
[76,78]:

(5)

where ϕ, CPnf, CPnp, and CPBase represent the nanoparticle volume frac-
tion, SHC of nanofluid, SHC of nanoparticles, and SHC of the base fluid,
respectively. The nanoparticle volume fraction can be converted to the
corresponding mass fraction using . However, the lim-
itation of model 1, despite its huge success, is its inability to account
for nanofluids' SHC with large nanofluid/base fluid density differences.
For a better capture of the experiment conditions, model 2, based on the
thermal equilibrium between nanoparticles and the base fluid, can also
be written in terms of densities and volume fraction in the form of model
(II) as follows [77–79].

(6)

where ρnf, ρnp, ρbf represent the bulk fluid density, nanoparticle density,
and base fluid density, respectively. Subsequently, in what was termed
model 3, the isobaric specific heat capacity of nanofluid was estimated
as a function of the nanoparticle mass concentration w with the relation
below in (7).

(7)

Over the years, these theoretical models have been used to calculate
the SHC of common metal-oxide based nanofluids such as Al2O3 [80],
MgO, ZnO, and SrO2 dispersed in ethylene glycol (EG)-water [81] and
so on. A highlight of some regression-based correlations (models) for es-
timating the SHC of metal oxide-based nanofluids is presented in Table
2 below. In many of these research studies, model II showed high accu-
racy compared to model I and gave poorly accurate SHC values for other
nanofluids [74,75,82].

3. Dataset description and best feature selection procedure

In the first step of providing a data-driven model, the predictive
models' reliability and adaptability are dependent on the integrity of the
implemented database, which refers to its completeness, accuracy, and
consistency of data. In this research, 1,180 reliable experimental data
points were collected from 12 references to design the data-driven mod-
els for predicting SHC of a wide variety of metal oxide-based nanoflu-
ids. The collected data implemented in the design of these predictive
AI-based models are listed in Table 3.

Table 2
Highlight of some published works on regression-based correlations (models) for estimat-
ing the SHC of metal oxide-based nanofluids.

Metal oxide
based nanofluid Theoretical model/correlations Remarks Reference

Al2O3/water,
TiO2/water

CP nf = ϕCP np + (1 − ϕ)CP Base SHC decreases
with an
increase in
nanoparticle
volume
concentration

Pak and
Cho [78]

Al2O3/EG-
water, ZnO/EG-
water,
SiO2/deionized
water

A, B, C are curve fit coefficient

SHC decreases
with an
increase in
nanoparticle
volume
concentration
and decrease
in temperature

Vajjha
and Das
[83]

CuO/EG SHC decreases
with an
increase in
nanoparticle
volume
concentration

Zhou et
al. [84]

SiO2/LiCO3-K2CO3 The addition
of SiO2
nanoparticles
at 1% mass
conc. increases
the SHC of the
base fluid by
14.5%

Shin and
Banerjee
[31]

Table 3
Details of the employed experimental data points for designing the predictive SHC models.

References
Number of
data Nanoparticle Base fluid

[45,85–92] 501 Al2O3 Water, EG, EG-Water (40:60),
R134a, PG-W(60:40)

[92–94] 260 CuO Water, EG, PG-W(60:-40), DW
[86,87,95] 165 SiO2 Water, EG, GC, EG-GC
[33,87,92] 46 TiO2 Water, PG-W(60:-40)
[86,92] 167 ZnO EG-Water (40:60), PG-W(60:40)
[96,97] 41 MgO Water, EG-DW

Selecting the optimal influential variables (or independent parame-
ters) subset among all existing useful parameters has always been one
of the most challenging issues in the preprocessing stage of providing
predictive AI-based models. It should be carefully considered [98]. The
feature selection procedure plays a vital role in the model's potential im-
provement and computational efficiency by decreasing the number of
features. The best subsets regression algorithm is an efficient approach
for indicating the optimum independent variables based on the best sub-
sets regression fits all possible models. In this process, three criteria,
namely, adjusted R-squared, Mallows (C∗), and standard error (S) are
usually employed for picking the best fitting models [99]. The Mallow
coefficient relationship is defined based on the residual sum of squares
(RSSk) for the regression model using k features and mean squared error
(MSEm( for the model with all existing feature as follows [99]:

(8)
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According to Table 4, the regression analysis of various influen-
tial input combinations was assessed where N denotes the number of
data points. It showed that the combination comprising of the entire
input variables (Combo 11) with the highest (R2=, 82.2%, and R2-adj
=82.1%) and lowest value of Mallow's coefficient and standard error
(C∗=7, S=0.29) was identified as the optimum selection for providing
the predictive model.

The influential independent variables of the optimum combination
include the solid volume fraction (ϕ), temperature (T), mean diame-
ter of nanoparticle (Dp), and SHC of nanoparticle (CPp), SHC of base
fluid (CPBase), and density of nanoparticle (ρp), whereas the heat capac-
ity (SHC) of metal oxide-based nanofluids is defined as the target. Thus,
the relationship between all predictors and target (CPnf) can be defined
as follows:

(9)

where φ = (m/ρ)np/((m/ρ)np + (m/ρ)bf) and m is the mass of the
nanoparticle. In this study, the data set was randomly divided into two
sections: 75% (885 data points) and 25% (295 data points) of data
points, which were used to perform training and testing stages, respec-
tively. Table 5 addresses the descriptive statistics, Pearson correlation
coefficient of all input variables with the SHC of metal oxide-based
nanofluids, and the normality criteria of all the data using the Ander-
son-Darling test [100]. According to Table 5, despite the small value
of skewness and kurtosis of variables, the Anderson-Darling normal-
ity test demonstrated that none followed the Gaussian distribution. Al-
though, the temperature having the minimum value of estimated dis-
tance (A2=7.932) from the Anderson-Darling test is the nearest pa-
rameter to the Gaussian distribution among all predictors. Moreover,
the Pearson correlation coefficient of input parameters with the target

shows the SHC of base fluid has the most linear correlation (Pc =0.79)
with SHC of metal oxide-based nanofluids (Fig. 2).

Furthermore, the independent variables and the response are scaled
and normalized between 0 and 1 to reduce computational cost and com-
plexity of predicting procedure using the below equation:

(10)

where the normalized value of datasets is defined with xnor is the value,
x is the original value of the dataset, xmax and xmin are the maximum and
minimum of the entire dataset implemented in providing the predictive
models, respectively.

4. Methodology

4.1. M5Tree model

M5Tree model initially proposed by Quinlan [101], and its structure
is based on binary decision trees. In recent years, the M5Tree model
has made significant progress in classification and regression problems
[66,102,103]. A decision tree usually consists of four parts: roots,
branches, nodes, and leaves. The tree model is the development, idea,
and concept of classification and regression trees with an inverted tree
structure that includes a root node at the top of the tree, which branches
off to other nodes and leaves, in a dramatic manner and in the form of
if-then rules. This model can extract knowledge in the form of mathe-
matical relations from the data set.

The idea behind this model is that it analyzes a multivariate mod-
eling problem by dividing it into smaller sub-problems and combining
the results. For this purpose, the problem space is divided into subdo-
mains, and for each subdomain, a multivariate linear regression model
is fitted. With this method, we will have a set of models; each of them

Table 4
Best subsets regression results for determining the optimum input combination

Combo Vars R 2 (%) R 2-adj (%) Mallows- C ∗ S φ T CP p CP Base DP ρp

1 1 61.7 61.7 1012.3 0.42 X
2 1 11.5 11.4 3496.2 0.64 X
3 2 69.7 69.7 618.1 0.37 X X
4 2 66.9 66.8 759.5 0.39 X X
5 3 72.9 72.8 464.1 0.35 X X X
6 3 72.9 72.8 465.3 0.35 X X X
7 4 76.4 76.3 292.6 0.33 X X X X
8 4 75.7 75.6 325 0.34 X X X X
9 5 80.1 79.9 113.4 0.30 X X X X X
10 5 78.9 78.8 169.9 0.31 X X X X X
11 6 82.2 82.1 7 0.29 X X X X X X

Table 5
The descriptive statistics of predictive variables and targets.

Statistics φ(%) T(K) CP p(J/K.g) CP Base(J/K.g) DP(nm) ρp(gr/cm 3) CP nf( J/K.g)

Mean 3.8184 322.01 0.69414 3.3985 40.818 4.3594 3.0246
StDev 2.883 24.03 0.12398 0.5876 17.554 1.4579 0.6762
Coef.Var 75.5 7.46 17.86 17.29 43.01 33.44 22.36
Minimum 0 241.82 0.514 1.3707 13 2.22 1.0434
Maximum 10 364.13 0.896 4.195 77 6.5 4.2875
Skewness 0.66 -0.87 -0.27 -0.36 0.78 0.28 0.22
Kurtosis -0.65 1.33 -1.37 -0.42 0.02 -1.22 -1.12
Pearson Coef. with CP nf -0.088 0.33 0.099 0.79 -0.229 -0.188 1.00
A2: Anderson-Darling test 24.11 7.932 50.91 23.12 46.32 63.18 22.28
P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Fig. 2. The Pearson correlation coefficient between the independent input variable and
Cpnf

is only valid for a part of the problem domain [104]. Therefore, a piece-
wise linear regression model is formulated to approximate the relation-
ship between input and output variables. This algorithm performs pos-
sible separations in multivariate space and automatically creates models
for these domains. We have a sort tree with the separation of rules in
internal nodes and its output in leaves. The tree model is the method of
dividing and overcoming traits for samples that reach a node. First, the
tree model creates a regression tree by dividing the problem space back-
ward. In this algorithm, the standard deviation parameter of the target
variable values is used as a measurement error in that node to create
a branch in a division node. A test is performed to perform the division
operation in the said node. Then, an attribute that further reduces the
deviation. Fig. 3 shows a schematic of how the input data input is di-
vided by the M5 tree model.

The criterion is selected as the attribute to be branched. The stan-
dard deviation reduction calculation (SDR) equation is as follows [105]:

(11)

(12)

T in relation (11) contains samples that have reached the node. Ti are
sets that are obtained by dividing the node by the selected attribute,
StDev is the standard deviation, yi is the target value and N is the total
number of data.

Model M5Tree is a tree model for predicting continuous numerical
traits in which linear regression functions appear on this tree's leaves.
The branching process is repeated many times in each node to reach the
final node (leaf) wherein the leaf, the (SSD) sum of the squared devi-
ations from the mean of the data is approximately zero. Through this
process, a large tree will be developed. Working with this large tree
would be difficult, so to achieve an optimal and efficient tree, a prun-
ing process is required to eliminate additional branches. Two different
pruning approaches are 1) Pruning before forming the maximum tree 2)
Pruning after forming the maximum tree. In the first approach, the pro-
duction of additional branches is allowed by pruning action. Still, in the
second approach, pruning is performed after the maximum tree forma-
tion. By minimizing the prediction error, the optimal tree is achieved.
After pruning, the smoothing process is performed to compensate for
sharp ruptures that inevitably occur between adjacent linear models on
pruned tree leaves, especially for models made from smaller amounts of
samples [105].

4.2. Multivariate adaptive regression spline (MARS)

Multivariate Adaptive Regression Spline (MARS), as a non-paramet-
ric regression approach, was introduced by Friedman (1991) [106]. The
MARS model consisted of a collection of simple linear models that spon-
taneously recognize trends (or patterns) related to nonlinearities and in-
teractions among the specific problem's parameters. This technique is
developed within the forward and backward stepwise stages. In the for-
ward stage, after processing several splits, a complicated and over pa-
rametrized model is obtained in which the accuracy level of the specific
model decreases [107]. Afterwards, the backward stepwise stage begins
with eliminating the arbitrary input variables among the datasets that
have been selected previously. The mathematical equation in the MARS
model is expressed as:

Fig. 3. Schematic view of input space division by the M5Tree and model generation
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(13)

where Y denotes the target parameter, BF, idenotes the basis functions
with the piecewise linear, β0, βi, and N∗ denote the constant term
(so-called ‘knot’), basis functions (BFs) coefficient, and number of BFs,
respectively [108,109]. The coefficients are introduced as weights,
which demonstrate the relative significance of each input variable. The
basis functions are principally described in the following [110]:

(14)

(15)

where and are indicative of the positive and non-positive
sections of spline functions, respectively, and hi indicates the knot of
the spline (threshold value). Similarly, in the process of the backward
stepwise stage, some of the BFs, created among the previous process
might be redundant. These BFs were removed through the Generalized
Cross-Validation (GCV) criterion until the ‘lack of fit’ criterion is a min-
imum predicting precision improvement [111]. The GCV formula is ex-
pressed as [110,112] :

(16)

where Zi is the observed value of output (or independent variable) of ith;
is the value estimated by MARS; ND is the number of observations;

NB is the number of BFs and d denotes penalty value for each BF.

4.3. Gene expression programming (GEP)

GEP is a learning method to develop mathematical modeling, pro-
posed by Ferreira [113]. It is a type of evolutionary computation and is
based on the concept of natural evolution. The GEP is like genetic pro-
gramming (GP), with the difference that it utilizes fixed-length string
(chromosome) for program modeling, which is then described as ex-
pression trees (ETs). In general, GEP is made up of two parts: chromo

somes and expression trees. Chromosomes are composed of a set of
genes, and a gene contains two parts: the head and the tail. A head can
be made by mathematical functions (−, +, /, ×) and terminal symbols
(x, y, z, -2), and a tail is comprised of terminal symbols [114,115]. GEP
starts with a set of random solutions represented by chromosomes. After
that, the chromosomes are drawn in the ET form and assessed in regard
to an objective function and chosen based fitness to regenerate using ge-
netic operators (crossover and mutation). The new solutions go through
the same procedure until the stopping criteria are met. The flowchart of
the GEP method is displayed in Fig. 4.

4.4. Extreme learning method (KELM)

Huang et al. [116] introduced the ELM for SLFNs (single layer
feed-forward neural networks) with randomly selected input weights
and hidden nodes and analytically defined output weights. It possesses
an outstanding generalization ability. For generalized SLFNs, the ELM
output function is:

(17)

where wi is the weight vector which makes a connection between the in-
put nodes and ith hidden node, bi is the bias of ith hidden node, βi is the
weight which connects ith hidden node to the output node, Tj is target
vector, h(.) is activation function, and fL(x) represents the output of the
SLFSN. Equation (8) can be written following as:

(18)
It is possible to obtain the smallest training error by calculating the

corresponding least-squares solution:

(19)

where H† is the inverse of the generalized MP (Moore-Penrose) matrix
and when HHTis non-singular, it can be solved as:

Fig. 4. Flowchart of GEP method.
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(20)

and finally, the output function of ELM comes as follows:

(21)

where C is the regularization coefficient for optimization and I denotes
the identity matrix.

If the activation function in the ELM method is replaced by a kernel
function, the kernel extreme learning machine (KELM) method is writ-
ten as follows [116]:

(22)

The output of the KELM function is expressed as follows:

(23)

This approach involves specifying the kernel function and its para-
meters and eliminating the activation function and the number of hid-
den layer nodes. Different kinds of kernel functions can be used in this
KELM model, such as RBF, linear, polynomial, and wavelet kernels.
Among the mentioned kernels, the RBF kernel has been one of the most
common kernels used in various researches [117,118]. As a result, we
used the RBF kernel in the present study. The RBF kernel function is de-
fined as follows.

(24)

where σ represents the kernel width RBF, the KELM structure is shown
in Fig. 5.

Fig. 5. Six inputs, hidden layers, and one output KELM structure.

5. Performance assessment

Various statistical criteria are employed to quantitatively evaluate
the robustness and efficiency of the predictive power of AI-based mod-
els. These criteria include the Correlation Coefficient (R), Root Mean
Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and
Mean Square Root Error (MSRE). Besides, Legates-McCabe’s Index (LMI)
and Willmott's Index of agreement (IA) [119] as the normalized good-
ness-of-fit metrics and are all implemented in this study for better vali-
dation.

(25)

(26)

(27)

(28)

(29)

(30)

where CPnfc, i and CPnfo, i denote the predicted and observed SHC of metal
oxide-based nanofluids, respectively. Also, and are mean val-
ues of predicted and observed SHC of metal oxide-based nanofluids. N
is the number of data points. The accuracy of the predictive model is
enhanced if the NRMSE and MAPE close to zero. R, LMI, and IA closed
to unity demonstrate the model's better performance. Besides, various
graphic criteria have been used to express each of the provided models'
capabilities, making it easier to judge the choice of the superior model.
These tools comprise of the scatter plots and error distribution plots.

6. Models configuration and development

As mentioned in the literature, the SHC of metal oxide-based
nanofluids is one of the most significant thermo-physical properties
whose precise estimation plays a substantial role in analyzing the cur-
rent commercial thermal energy storage system [120]. In this research,
four robust ML approaches (i.e., KELM, MARS, M5Tree, and GEP mod-
els) have been applied to accurately predict the SHC of metal ox-
ide-based nanofluids. Fig. 6 depicts the road map for estimating the
SHC of metal oxide-based nanofluids using KELM, GEP, MARS, and
M5Tree models.

Six input variables fed all the AI models: solid volume fraction (ϕ),
temperature (T), mean diameter of nanoparticle (Dp), SHC of base fluid
(CPBase), SHC of nanoparticle (CPp), and density of nanoparticleρp.
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Fig. 6. Road map of predicting process SHC of metal oxide-based nanofluids.

ARESLab, as an open-source code in MATLAB, has been applied to
implement the MARS model in the present investigation. In the MARS
model's first development, various piecewise linear BFs and order of in-
teractions were examined in a trial and error process. The optimum val-
ues of BFs and interactions order were obtained 25 and second-order,
respectively, and 3 BFs were pruned in the backward elimination stage.
Eventually, the minimum value of the GCV parameter for the optimum
MARS model with 22 piecewise linear BFs was obtained by 0.0065. The
corresponding coefficients of BFs with the intercept term are listed in
Table 6.

Table 6
Basis functions and related coefficients were obtained from the MARS model to predict
SHC of metal oxide-based nanofluids.

Basic function Equation Coefficientβi

intercept - 2.8118
BF1 BF1 = max (0, CP Base − 3.0464) 0.62284
BF2 BF2 = max (0, ρp − 3.6) −0.087402
BF3 BF3 = max (0, 3.6 − ρp) −11.073
BF4 BF4 = BF1 × max (0, ϕ − 0.5) −0.059479
BF5 BF5 = BF2 × max (0, CP Base − 3.0925) 0.86679
BF6 BF6 = BF2 × max (0, 3.0925 − CP Base) 0.10473
BF7 BF7 = max (0, Dp − 76) 0.38605
BF8 BF8 = max (0, 76 − Dp) 0.0018423
BF9 BF9 = BF8 × max (0, ρp − 3.6) 0.0021082
BF10 BF10 = BF8 × max (0, 3.6 − ρp) 0.21048
BF11 BF11 = BF8 × max (0, CP Base − 4.0889) 0.053541
BF12 BF12 = BF8 × max (0, 4.0889 − CP Base) −0.008606
BF13 BF13 = BF2 × max (0, ϕ − 0.4) −0.016226
BF14 BF14 = BF2 × max (0, 0.4 − ϕ) 1.8847
BF15 BF15 = max (0, T − 329.63) −0.0025706
BF16 BF16 = max (0, 329.63 − T) −0.0030795
BF17 BF17 = BF1 × max (0, ρp − 3.9) −0.86457
FB18 BF18 = BF1 × max (0, 3.9 − ρp) 1.2392
BF19 BF19 = BF3 × max (0, T − 319.37) −0.01788
BF20 BF20 = BF3 × max (0, 319.37 − T) −0.0033437
BF21 BF21 = max (0, ϕ − 0.5) −0.028314
BF22 BF22 = max (0, 0.5 − ϕ) 0.40512

Developing a GEP model based on the GeneXpro Tools has been em-
ployed to predict and obtain the predictive correlation based on the sim-
ple mathematical operators (i.e., +, -,×, /, and pow) for SHC of metal
oxide-based nanofluids. The setting parameters for developing the GEP
model are tabulated in Table 7. Fig. 7 demonstrates the expression tree
of the GEP model, which can be used for the estimation of SHC of metal
oxide-based nanofluids with (R=0.9570). The correlation derived from
the tree model of GEP is reported in Table 8, which researchers can eas-
ily use due to using simple mathematical operators.

To provide the KELM, two crucial hyperparameters, namely, the reg-
ularization coefficient (C) and width of kernel function (σ) were opti-
mized by a trial and error procedure. The optimal values of C and σ
were obtained from 700000 and 40, respectively. As mentioned before,
the KELM network's topology is included 3 layers and six input neurons
(equal to input variables).

7. Discussion and result

In the current research, the performance of understudy AI tech-
niques has been assessed using strong statistical measures. Additionally,
the statistical results of AI techniques for the training, testing, and all
dataset have been given in Tables 9, respectively. From Table 9, the

Table 7
Genetic operators for the GEP model.

GEP parameter Setting of parameter

Number of chromosomes 30
Head size 7
Number of genes 5
Function set +, −, ×, /, √, power
Fitness function RMSE
Mutation rate 0.00138
Inversion rate 0.00546
Gene transposition rate 0.00227
One-point and two-point recombination rate 0.00227
Gene recombination rate 0.00227

9
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Fig. 7. GEP Expression tree for predicting SHC of metal oxide-based nanofluids using simple mathematical functions (+, -, ×, /, and pow).

Table 8
Equations obtained by the GEP methods to estimate the SHC of metal oxide-based nanoflu-
ids.

Model Formula

GEP:

results of KELM model indicated the highest correlation (R=0.9997
and IA=0.9998 and LMI=0.9793) and the least error (RMSE=0.0059
J/K.g, MAPE=0.4644%, and MSRE=0.0001) than MARS (R=0.9930,
RMSE=0.0264 J/K.g, MAPE=1.9826% and IA=0.9965), M5Tree
(R=0.9921, RMSE=0.0288 J/K.g, MAPE=1.7666% and IA=0.9957)
and GEP (R=0.9570, RMSE=0.0650 J/K.g, MAPE=5.5134% and
IA=0.9771) models. Furthermore, in the testing phase, the KELM tech-
nique with R of 0.997, RMSE of 0.0153 (J/K.g) was significantly de-
termined as the superior predictors for estimating the SHC of nanofluid
over standalone AI models. Additionally, the testing phase results in-
dicate that the MARS (R=0.9892, RMSE=0.0330 J/K.g, and
MAPE=2.3298) and M5Tree (R=0.9867, RMSE=0.0370 J/K.g, and
MAPE=2.1537) models have almost similar efficiency. Fig. 8 shows
the spider plots of all statistical performances corresponding to the four
developed AI-based models in testing and training datasets. Fig. 9 de-
picts the graphical assessment of four AI techniques for both training
and testing stages. The left column demonstrates the scatter plots, and
the right column describes the distribution of predicted datasets com-
pared to experimental values. The Cpnfvalues given by the KELM model
by permissible level of accuracy show the well-matching with labora-
tory observations those obtained MARS, M5Tree, and GEP techniques.

Table 9
The statistical evaluation of all predictive models for training, testing, and all data sets.

Metrics MARS KELM M5Tree GEP

Train R 0.9935 0.9997 0.9930 0.9593
RMSE 0.0254 0.0050 0.0273 0.0632
MAPE 1.9368 0.4149 1.7145 5.3555
LMI 0.9106 0.9813 0.9192 0.7558
MSRE 0.0014 0.00004 0.0015 0.0062
IA 0.9967 0.9999 0.9961 0.9783

Test R 0.9892 0.9994 0.9867 0.9500
RMSE 0.0330 0.0080 0.0370 0.0703
MAPE 2.3298 0.6152 2.1537 5.9887
LMI 0.8933 0.9729 0.9029 0.7271
MSRE 0.0023 0.0001 0.0028 0.0082
IA 0.9945 0.9997 0.9928 0.9732

All R 0.9930 0.9997 0.9921 0.9570
RMSE 0.0264 0.0059 0.0288 0.0650
MAPE 1.9826 0.4644 1.7666 5.5134
LMI 0.9074 0.9793 0.9163 0.7489
MSRE 0.0012 0.0001 0.0013 0.0067
IA 0.9965 0.9998 0.9957 0.9771

It should be said that MARS, M5, and GEP had the most efficient predic-
tions in the rangesCpnf ≥ 3 Cpnf ≥ 3.5, and 3 ≤ Cpnf ≤ 4, respectively.

Error analysis was comprehensively conducted to efficiently assess
the precision level of developed techniques by Relative Deviation (RD)
(RD = 100 × Cpnf/(Cpnf − Cpnf)) and Cumulative Frequency of Absolute
Relative Error (CFAE). Fig. 10 demonstrated the distribution associ-
ated with the relative deviation for all predictive models in the form
of the violin (A) and histogram plot (B) for both training and testing
stages. From Fig. 10, the relative deviation probability density of the
KELM technique illustrates a high level of compression in the training
and testing phase than those observed by MARS, M5Tree, and GEP.
Owning to the least range of deviation, evaluation of the RD range in
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Fig. 8. The spider plot of performance metrics for developed predictive models in training (Left) and testing (Right) phases.

dicated KELM technique (−4.2 % ≤ RD ≤ 8.0%) had superior perfor-
mance to the MARS (−24.8 % ≤ RD ≤ 15.3%), M5Tree
(−30.0 % ≤ RD ≤ 29.50%), and GEP (−75 % ≤ RD ≤ 16.6%) tech-
niques. Deeply measurement of the relative deviation implies that the
underestimation in MARS and GEP model is dominated by the overes-
timation, whereas in EKELM, this trend is reversed. Besides, MARS and
M5Tree techniques have been distributed with less compression than the
GEP, which has a higher deviation range between all predictive models.

Moreover, another efficient error analysis has been carried out on
the validation of the AI models in predicting SHC of metal oxide-based
nanofluids by measuring the variation of percentage of cumulative fre-
quency of absolute relative error (CFAE). As seen in Fig. 11 (Left),
over 90% of the estimated SHC (Cpnf) given by the KELM model re-
sulted in Absolute Relative Error (ARE) of lower than 1 %. In con-
trast, MARS and M5Tree, and GEP models obtained 4.53%, 3.42%,
and 12.0%, respectively. Owning to similar performance of MARS and
M5Tree techniques, the values of ARE between 0 and 6 percentages
have been magnified in Fig. 11 (Right) So that a more comprehen-
sive judgment can be made about their merits. According to Fig. 11
(Right), the MARS approach in the range of 0 to 65% (up to ARE=6%)
of all predicted values brings about more precise results. In contrast,
over 65% of the data points, the M5Tree has slightly better predictive
performance in estimating SHC. Regarding the results of error analysis,
it was inferred that the M5Tree resulted in comparatively better per-
formance (MAPE=1.7666%) in comparison with the MARS technique
(MAPE=1.9826%), despite having more less correlation for all datasets
(R=0.9921) and higher RMSE (0.0288 J/K.g), stood at the second rank
with a highly acceptable precision level in the prediction of SHC.

In the nest stage, a physical trend of SHC for four nanofluids was
examined for finding the capabilities of the leading AI models. Then
results of consistency between experimental observations and AI mod-
els were compared to models 1 and 2. Fig. 12 depicted the variation
of SHC three understudy metal oxide-based nanofluid including SiO2
by Dp=22nm in a mixture of EG, GC, and GC-EG [121] versus the
volume fraction (%) obtained from four AI-based models, experimental
data points. Model 1 (Pak and Cho) [88] and Model 2 (Xuan and Roet-
zel's) [122] As seen in Fig. 12, the results indicated that SHC values
predicted by the proposed KELM models results were in good agreement
with the measured values and superior to the models 1 and 2.

According to Fig. 13, the physical trend of SHC associated with
nanofluids, composed of ZnO in a mixture of W-EG (40:60) by
ϕ = 7 % and Dp = 77nm [86], against temperature (K) between the
range of 310 to 365 (K) were conceptually depicted by using four un

derstudies AI techniques and the models 1 and 2 [88,122]. From Fig.
13, it can be said that the KELM model was prosperous in obtaining
the physical meaning of experimental data sets. The M5Tree model for
rang of (315 ≤ T < 340 K) has better agreement with experimental val-
ues than MARS, whereas the MARS model outperforms M5Tree for rang
of (340 ≤ T ≤ 365 K).

In the last validation case, the variation of Al2O3/R134a oil [90]
at ϕ = 5% versus the temperature (K) in the AI models' performance
measurement is illustrated in Fig. 14. The KELM technique can obtain
optimally the expected physical trend of the pertaining experimental
data points followed by MARS, M5Tree, and GEP techniques. Eventu-
ally, it can be declared that the KELM model is superior to the other
machine learning-based models for accurately estimating SHC of metal
oxide-based nanofluids.

8. Robustness evaluation of models

According to the Vajjha and Das [123] investigations, the existing
correlation cannot accurately estimate nanofluids' SHC. Thus, they pre-
sented an individual correlation based on ϕ, T, CPP and CPBase for three
metal oxides, namely, Al2O3, ZnO, and SiO2 mixture in water and W-EG
(40:60), which had good agreement with the observed value of SHC
with a maximum deviation of 5%, 4.4%, and 3.1%. the Vajjha and Das
[123] correlation is expressed as follows:

(31)

T denotes the reference temperature (T0=273K), A, B, and C are the
curve-fit coefficient. The curve-fit coefficients for each metal oxide are
listed in Table 10.

In this section, the robustness of developed AI models for Al2O3,
ZnO, and SiO2 based nanofluids in the validity ranges of the modified
Vajjha and Das [123] correlations are examined.

Regarding Table 11, the result indicated that for ZnO based nanoflu-
ids, the KELM terms of (R=0.9981 and RMSE=0.0052) has the best per-
formance, followed by MARS (R=0.9767 and RMSE=0.018), M5Tree
(R=0.9555 and RMSE=0.0322), Vajjha & Das [123] (R=0.7850 and
RMSE=0.0830), and GEP (R=0.7562 and RMSE=0.0656). For the
Al2O3 nanofluids, all developed soft computing-based models outper-
formed the Vajjha & Das [123] correlation. The metric performance in
Table 11 reported promising simulation results for KELM with around
30% precision improvement compared
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Fig. 9. The scatter plot of four AI models (Left) and the distribution of predicted value compared with an experimental dataset for both testing and training phases.

with Vajjha & Das [123] correlation. Besides, for SiO2 based nanofluids
in the validity ranges of (315 ≤ T < 363, ϕ ≤ 7%), KELM (R=0.9987)
and MARS (R=0.9754) had a successful performance in the estimation
of SHC. Simultaneously, the GEP and Vajjha & Das [123] correlation
results showed a very similar accuracy. Fig. 15 illustrated the degree

12
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Fig. 10. The probability density of relative deviation (Left) and frequency distribution histogram of relative deviation frequency for all AI models.

of conformity of modeling and observational SHC values obtained by the
KELM, MARS, M5Tree, GEP, and Vajjha & Das [123].

9. Sensitivity analysis

One of the essential parts of under predictive study models is sensi-
tivity analysis, which can help to properly select the predictor parame

ters (i.e., ϕ, T, CPp, CPBase, Dp, ρp) in a miserable range in modeling and
consequently enhance the accuracy of the AI-based model. Based on
the Pearson correlation between the independent and the target vari-
able in the data preprocessing stage, SHC of base fluid (CPBase) with the
most value of correlation coefficient (rp=0.79) was taken into account
to be the most significant predictor. According to the non-linear trend
among independent and dependent variables, the relative significance

13
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Fig. 11. The cumulative frequency against absolute relative error (deviation) for four soft computing models in minimized scale (Left) and originally scale (Right).

Fig. 12. Comparing the predicted SHC using the KELM model, Model 1, Model 2, and experimental datasets for thee nanofluids consist of SiO2 by ϕ = 1, 2, 3, 4% in an EG, GC, and
GC-EG [121].

of the predictors is precisely evaluated by subsequent elimination of a
given input and preserving the other inputs for feeding the AI technique
[58,124,125]. In this approach, the KELM technique, as the most effi-
cient AI model, has been selected to survey the response of SHC based
upon the degree of influence of each input in terms of the statistical
measures.

As seen in Table 12 and Fig. 16, it was found that CPBasewith the
lowest correlation coefficient (R=0.7043) and having the most error
metrics (RMSE=0.1589 J/K.g and MAPE=11.5986 %) is introduced as
the most sensitive input variable in the evaluation of the SHC of nanoflu-
ids. Additionally, the volume fraction (R=0.9528 and RMSE=0.0684 J/
K.g) and SHC of nanoparticles (R= 0.9865 and RMSE=0.0372 J/K.g)
stood at the 2nd and 3rd ranks. In Fig. 16, it was conveniently found that
the temperature (R=0.9977 and RMSE=0.0153 J/K.g) is identified as
the least influential input variable in predicting the SHC of nanofluids.

10. Qualitative response assessment of SHC upon influence
features

In this section, a brief qualitative response analysis is adopted to
evaluate the SHC variations against effective features. For this purpose,
the 2D counters of SHC of metal oxide-based nanofluids were plotted in

terms of CPP and ϕ as the effective features, for Water, EG, and a mixture
of water and EG, as the most common base fluids, in Fig 17. The SHC
response analysis from the contours illustrates that in a generalized hy-
pothesis, the decreasing the SHC of CPBaseyield the reduction of SHC of
nanofluids. Table 13 listed the thermo-physical properties of metal ox-
ide nanoparticles and base fluids used in model development. Carefully
assessing the contours inferred the below results:

• Measuring the metal oxide dispersed in water (DW/W) nanofluids
(Fig. 17-A) indicated that for ϕ ≥ 4, MgO, TiO2, and ZnO are the most
influential metal oxide in significantly decreasing the SHC of water,
respectively and, as MgO can reduce the over 25% of SHC of water.
The reduction performance of SiO2 was found in the intermediated
level.

• Fig. 17-B demonstrated that the Al2O3 and CuO are the most in-
fluential metal oxide, which can adequately reduce the SHC of the
base fluid in understudy ethylene glycol-based nanofluids up to 50%,
respectively. The range of 3 ≤ ϕ ≤ 6 in the qualitative judgment is
found as the optimum values of nanoparticle volume fraction.
Fig. 17C inferred that for the metal oxide-based nanofluids dispersed
in a mixture of water and ethylene glycol, the CuO, ZnO, MgO in
range of ϕ ≥ 5 having promising performance in reducing the capac-
ity of the base fluid compared to other metal oxides, respectively.

14
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Fig. 13. Comparing the predicted SHC using four AI models, Pak% Cho (Model 1), Xuan&Roetzel (Model 2), and experimental datasets for nanofluids consist of ZnO in a mixture of W-EG
(40:60) [86].

Fig. 14. Comparing the predicted SHC using developed AI-based model and experimental datasets for metal oxide-based nanofluids consist Al2O3 by ϕ = 5% in R134a oil as base fluid
[90].

Table 10
Curve-fit coefficients for SHC of three metal oxide-based nanofluids [123].

Nanofluid A B C Validity Ranges

Al2O3 0.24327 0.5179 0.4250 315 ≤ T < 363, ϕ ≤ 10%
SiO2 0.48294 1.1937 0.8021 315 ≤ T < 363, ϕ ≤ 7%
ZnO 0.12569 0.9855 0.299 315 ≤ T < 363, ϕ ≤ 10%

11. Conclusion and remarks

The current research aimed to provide a robust ML model, namely,
the KELM model, to estimate SHC for a broad range of metal oxide-based
nanofluids. Moreover, three AI models (i.e., MARS, m5Tree, and GEP)
have been applied to compare the results. To perform the training and
testing phases, 1180 experimental datasets have been accumulated from
authenticated literature. The best input variables explored are based on
the best subset analysis, which contains six predictors comprised of ϕ, T,
CPp, CPBase, Dp and ρp.
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Table 11
Statistical evaluation for SHC of three metal oxide-based nanofluids using AI-based models
and Vajjha & Das [123].

Metrics Vajjha&Das KELM MARS M5Tree GEP

ZnO R 0.7850 0.9981 0.9767 0.9555 0.7562
RMSE 0.0830 0.0052 0.0180 0.0322 0.0656
MAPE% 6.8283 0.3706 1.3835 2.4383 5.6687
E 0.0593 0.9475 0.7995 0.6458 0.1730
MSRE 0.0080 0.0000 0.0003 0.0010 0.0041
IA 0.7508 0.9990 0.9879 0.9501 0.8012
Rank 4 1 2 3 5

Al2O3 R 0.7607 0.9978 0.9260 0.9770 0.8777
RMSE 0.0712 0.0050 0.0287 0.0163 0.0397
MAPE% 5.9119 0.3817 2.0775 1.0960 3.1320
E 0.1401 0.9397 0.6455 0.8137 0.2510
MSRE 0.0047 0.0000 0.0008 0.0003 0.0016
IA 0.8028 0.9989 0.9609 0.9873 0.8987
Rank 5 1 2 3 4

SiO2 R 0.8013 0.9987 0.9754 0.8857 0.8010
RMSE 0.0520 0.0027 0.0147 0.0403 0.0445
MAPE% 2.8406 0.2118 0.9944 2.6235 3.3032
E 0.4238 0.9524 0.8009 0.5499 0.4184
MSRE 0.0021 0.0000 0.0002 0.0028 0.0018
IA 0.8181 0.9994 0.9836 0.8997 0.8688
Rank 5 1 2 3 4

- Results of quantitative comparisons indicated that the KELM model
with R of 0.9994, RMSE of 0.0080 J/K.g, and MAPE= 0.6152% re-
sulted in a highly satisfying accuracy level in the assessment of SHC
for understudy metal oxide-based nanofluids when compared to MARS
(IA=0.9892, RMSE=0.0330 J/K.g, and MAPE=2.3298%), M5Tree
(IA=0.9867, RMSE=0.0370 J/K.g and MAPE=2.1537%) and GEP (IA
=0.950, RMSE=0.0703 J/K.g and MAPE=5.9887%) in the testing
phase.

- Error analysis of the AI results demonstrated that the MARS and
M5Tree model's physical variations of the SHC parameter have al

most similar predictive performance. In addition to this, the physi-
cal trend assessment of SHC of ZnO in a mixture of W-EG (40:60) in-
dicated that the MARS model predicted values in high temperatures
were in good agreement with the experimental SHC than those ob-
tained by M5Tree and vice versa.

- The robustness of the developed soft computing models was measured
by comparing with the Vajjha & Das correlation for Al2O3, ZnO, and
SiO2 based nanofluids, which AI models were more efficient and accu-
rate than Vajjha & Das correlation except for ZnO based nanofluids.

- A qualitative response assessment of SHC of nanofluids was carried out
for three common base fluids, namely, Water, ethylene glycol, and a
mixture of water and ethylene glycol, which of all the studied oxides,
CuO, ZnO, and MgO had a relatively more effective performance in re-
ducing the SHC of the base fluids.

- Results of the sensitivity analysis indicated that omitting the SHC of
base fluid (CPBase) and temperature (T) in the KELM model yield the
worst (R =of 0.7043 and RMSE of 0.1589 J/K.g) and best results, re-
spectively. Thus, it can significantly infer that CPBase and is identified
as the most influential predictor in assessing SHC of nanofluids among
all the independent predictive variables. In contrast, the temperature
(T) as the least important feature can be ignored in SHC of metal ox-
ide-based nanofluids modeling.
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Fig. 15. The performance comparison between Vajjha & Das [123] and developed AI models in predicting SHC of AL2O3, ZnO, and SiO2 based nanofluids.

Table 12
The sensitivity analysis via the KELM model.

All-φ All-T All-CP p All-CP Base All-Dp All-ρp All

R 0.9528 0.9977 0.9865 0.7043 0.9873 0.9972 0.9994
RMSE 0.0684 0.0153 0.0372 0.1589 0.0358 0.0173 0.0080
MAPE 5.7832 0.9895 2.0380 11.5986 2.4084 1.1442 0.6152
IA 0.9752 0.9988 0.9931 0.8155 0.9934 0.9985 0.9997
Rank 2 6 3 1 4 5 –
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Fig. 16. The statistical parameters for all sensitivity analysis situations which obtained by
the KELM model.

Fig. 17. Assessment of the qualitative SHC response upon influence features for metal oxide nanofluid in different base fluids.
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Table 13
Thermo-physical properties of all existing metal oxide nanoparticles and base fluids in the
database [126–128].

Metal oxide AL2O3 CuO SiO2 ZnO TiO2 MgO

Cp (J/K.g) 0.765 0.53 0.745 0.514 0.683 0.877
ρp(gr/cm 3) 3.60 6.50 2.20 5.60 4.20 3.58
Base fluids Water EG W(DW)/EG R134a W-PG EG-

CG/CG
Rang of Cp (J/
K.g)

4.05-4.2 2.4-2.61 3.08-3.72 1.37-1.47 3.05-3.5 2.3-2.48
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