
Mathematical Concept of the
Bloch Flow Equations for
General Magnetic Resonance
Imaging: A Review
O.B. AWOJOYOGBE,1 O.M. DADA,1 O.P. FAROMIKA,2 O.E. DADA3

1Department of Physics, Federal University of Technology, Minna, Niger State, Nigeria
2Department of Physics, Federal University of Technology, Akure, Ondo State, Nigeria
3Department of Medicine, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Kwara State, Nigeria

ABSTRACT: The recent analytical solutions to the Bloch NMR equations for a general RF
excitation have opened many possibilities for further investigations to NMR theory and
experiments even at the molecular level. Fortunately, many of the most important but hid-
den applications of blood flow and general physiological fluid flow parameters can be
revealed without too much difficulty if appropriate mathematical techniques are used to
explore the new NMR equations derived from the Bloch equations. Generally, we should be
very much concerned with analytical results that the Bloch NMR flow equations can provide
for different physical, biomedical, geophysical, medical, and environmental situations espe-
cially at the molecular level for the purpose of interdisciplinary approach to solve difficult
problems. It can be motivating, exciting, and rewarding if attention are focused on the possi-
ble application of these analytical techniques and methods suitable for describing each of
the various normal and pathological biological conditions. Most solutions presented in this
study are described both in isotropic and anisotropic geometries with minimum mathemati-
cal assumptions. We discussed a general expression for the diffusion coefficients in the
common geometries. These analytical results can prove to be very invaluable in the analysis
of restricted flows. It is so much special because it could tell us when restricted flows occur
and also reveal the causes of such restriction. Such knowledge can help in finding the
causes of many diseases (whose causes are yet unknown) and suggest the best treatment
for them. � 2011 Wiley Periodicals, Inc. Concepts Magn Reson Part A 38A: 85–101, 2011.
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INTRODUCTION

Diffusion studies are valuable source of information

on many facets of molecular organization and phase

structure in restricted geometries. The knowledge of

a variety of systems (such as sedimentary rocks, bio-

logical tissues, biomedical materials for clinical

applications) can benefit from clarifying the role of

water molecule diffusion in restricted geometries.

Zeolites, for example are porous crystalline materials

that absorb a number of molecules. Because of their

property of high void volume, regular pore distribu-

tion, and shape selectivity, they are used extensively

in industries as sieves and catalysts. Both the cata-

lytic as well as sieving application of the zeolites

depend on the diffusivities of the adsorbed mole-

cules. Particularly, the cracking of large hydrocar-

bons inside the zeolitic pores is known to be deter-

mined by the ease with which the reactants and the

product can diffuse in the pores which in turn

depends on factors including the temperature, the

shape and size of the pore and of adsorbed hydrocar-

bon, the concentration of the guest molecule, and so

on. The sorption, binding, and the transport charac-

teristics of various adsorbents in zeolitic pore system

have been investigated extensively both experimen-

tally and theoretically, with an objective to achieve

an understanding of the behavior of guest molecule

in confined geometries.

Biological tissues, on the other hand, are complex

systems that contains a variety of liquid components

macromolecules and ions. They are highly heteroge-

neous media that consists of various compartments

and barriers of different diffusivities. In terms of its

cyto-histologic architecture, a tissue can be regarded

as a porous structure made up of a set of more or less

connected compartments in a network—like arrange-

ment. Because molecular motion of water is signifi-

cantly affected by macromolecules, the variation in

the relaxation times between tissues is attributed to

the effect of macromolecular interaction. The move-

ment of water molecules during diffusion-driven ran-

dom displacement is restricted by compartmental

boundaries and other molecular obstacle in such a

way that the actual diffusion distance is reduced,

compare with that expected in unrestricted diffusion.

When diffusive properties change with the direction

of diffusion, the prevailing condition is anisotropic

and the associated displacement is no longer iso-

tropic and Gaussian, like the unrestricted diffusion.

An understanding of the detailed motion of mole-

cules in a system by means of its diffusivities which

has direct relationship with the movement of the

spins and hence velocity of flowing tissue will be of

tremendous help in understanding the physiology of

the biological system.

In general, it is widely reported that the thermody-

namic and transport properties of fluids are consid-

ered altered on their physical confinement in a well-

defined channel and cavity system of porous materi-

als - biological or nonbiological. Two competing

effects seem to be the main contributors of the modi-

fication of the dynamics of fluid under confinement:

i) The geometric confinement and ii) the interaction

with the host cage. In other words, the problem can

be addressed by asking how the properties of the po-

rous medium, such as size, surface area, or the chem-

ical nature of the interface can modify the dynamical

behavior.

Flow and diffusion through porous media repre-

sent a vast field of study with many scientific and en-

gineering applications (1–58). A detailed understand-

ing of the complexities of flow and diffusion in po-

rous materials is essential for the design,

development, and optimization of catalysis and

adsorption. (59). Diffusion and flow can be measured

very delicately and accurately using an NMR system

(60). The essence of the method is that motion of

magnetic nuclei in a magnetic field and magnetic

gradient results in those nuclei changing their Larmor

precession frequency and their phase angle in the

field. Because NMR can be set up to measure the

number of nuclei at specific phase angles, the motion

of groups of nuclei can be determined very accu-

rately based on the fundamental Bloch NMR flow

equations.

Due to its noninvasiveness, the NMR techniques

have proved to be a powerful tool in studying flow in

restricted geometries. It has been particularly useful

for studying diffusion because they can provide accu-

rate self-diffusion coefficient for the individual com-

ponents or multi-components systems in a matter of

minutes, whereas traditional radioactive tracer tech-

niques may take weeks for each component and

require isotropic substitution. There are two main

ways in which NMR have been used to study self-

diffusion coefficients: i) analysis of relaxation data

and ii) pulsed field gradient (PFG) NMR (61). In the

PFG method, the attenuation of a spin echo signal

resulting from the dephasing of the nuclear spins due

to the combination of the translational motion of the

spins and the imposition of spatially well-defined

gradient pulses is used to measure motion. In contra-

distinction to the relaxation method, no assumptions

need to be made regarding the relaxation mecha-

nisms or in relating to correlation time tc to the trans-

lational motion of the probe molecule. However, to

determine the diffusion coefficient, D, as against
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apparent diffusion coefficient, Dapp, the effects of

structural boundaries that affect the natural diffusion

coefficient of the probe species needs to be consid-

ered. The application of gradients affords a powerful

tool, not only for studying molecular diffusion under

favorable circumstances down to (,1017m2s1) but also
for providing structural information in the range of 0.1

- 100mm when diffusion in restricted (e.g. diffusion in

a cell) on the NMR time scale. Unfortunately, there is

no single article that provides analytical options to the

Bloch NMR flow equation from which one can adapt

to solve specific problems (although there has been a

good number of literature that have provided a very

good discussion of the underlying principles (61–65)).
Therefore, the differential equations in different geo-

metries and coordinates derived from the Bloch NMR

flow equations as assembled in this article can be

taken as definitions of new functions to be studied in

detail for specific needs.

MATHEMATICAL FORMULATION OF
BLOCH EQUATIONS FOR DIFFUSION
NMR

NMR is governed by the Bloch NMR flow equations,

the equations which relate macroscopic concept of

magnetization to the applied radiofrequency, gradient

and static magnetic fields. The dynamics of the

changes in bodies containing NMR—sensitive nuclei,

its physical changes (for example, freely diffusing or

bound within a cavity) are captured in NMR by the

Bloch equations: the equations describing the physics

of magnetic moments—such as the moment of the

water proton—as a precessional, gyroscopic motion

in the presence of exponential damping (T1 and T2),
perturbing magnetic fields (the fixed B0, and the

time-varying radiofrequency B1).

The Bloch NMR equations are a set of coupled

differential equations describing the behavior of the

macroscopic magnetization vector under any condi-

tions. A form of the equations (66–79) is given as:

dMx

dt
¼ qMx

qt
þ v

qMx

qx
¼ �Mx

T2
[1]

dMy

dt
¼ qMy

qt
þ v

qMy

qx
¼ gMzB1ðxÞ �My

T2
[2]

dMz

dt
¼ qMz

qt
þ v

qMz

qx
¼ �gMzB1ðxÞ �Mo �Mz

T1
[3]

From the above equations, a partial differential

equation of second order (76, 77, 80, 81) is derived,

which is very invaluable in the analyses of space

and time dependence of the NMR transverse

magnetization.

v2
q2My

qx2
þ 2v

q2My

qxqt
þ vTo

qMy

qx
þ To

qMy

qt
þ q2My

qt2

þ Tg þ g2B2
1 x; tð Þ� �

My ¼ FogB1 x; tð Þ ½4�

where To ¼ 1
T1
þ 1

T2
, Tg ¼ 1

T1T2
and Fo ¼ Mo

T1

Equation [4] is the fundamental NMR time de-

pendent second order differential equation which can

be applied to any fluid flow problem. At any given

time t, we can obtain information about the system,

provided that appropriate boundary conditions are

applied. From this equation, we could obtain the dif-

fusion equation, the wave equation, telephone and

telegraph equations etc., and solve them in terms of

NMR parameters by placing the appropriate restric-

tion on the system as may be dictated by Eq. [4]

thereby obtaining very important information about

the dynamics of the system. It should be noted, how-

ever, that the term FogB1 x; tð Þ is the forcing function.

If the function is zero, we have a freely vibrating sys-

tem; else, the system is undergoing a forced vibration.

THE TIME-INDEPENDENT BLOCH NMR
FLOW EQUATION

For a steady flow, all partial derivatives with respect

to time can be set to zero (time independent). Hence,

Eqs. [1]–[3] become (75, 76, 77):

v2
d2My

dx2
þ vTo

dMy

dx
þ Tg þ g2B2

1ðxÞ
� �

My ¼Mo

T1
gB1 xð Þ

[5]

Equation [5] is a time independent Bloch NMR

flow equation.

THE TIME-DEPENDENT BLOCH NMR
FLOW EQUATION

For a flow that is independent of the space coordinate,

x; that is, the magnetization does not change appreci-

ably over a large x for a very long time, all partial

derivatives with respect to x could be set to zero (time

dependent). Hence, Eqs. [1]–[3] become (78):

d2My

dt2
þ To

dMy

dt
þ Tg þ g2B2

1ðtÞ
� �

My ¼ Mo

T1
gB1 tð Þ

[6]
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Equation [6] is a time dependent Bloch NMR flow

equation which can be solved for appropriate physi-

cal situations. Detailed step by step derivations of

Eq. [6] has been given in a separate study (78).

DIFFUSION IN NUCLEAR MAGNETIC
RESONANCE

Generally, fluids have random molecular motions of

spins, which contribute to signal loss or signal attenu-

ation. As the NMR sensitive molecules move they

carry their magnetic moments with them. Because

they move very short distances, they diffuse over a

small distance. This leads to an irreversible blurring

of the magnetization grating and hence a loss in high

spatial frequency information. That is, molecule dif-

fusion is embedded in the NMR signal, provided we

can properly interpret the information. The influence

of the spin’s motion on the magnetization grating is

included in the Bloch equation by adding a diffusion

term. This is exactly what Torrey did. The Bloch-

Torrey equation is a generalization of the Bloch

equations, which includes added terms due to the

transfer of magnetization by diffusion (15).
Another form of the Bloch equation is given as:

d ~M

dt
¼ g � ~M � ~B0

� �
excitation in B0

þ

Mx

T2
My

T2
M0�Mz

T1

0
BB@

1
CCA

transverse; longitudinal relaxation

½7�

The Bloch–Torrey equation is then obtained by

adding the diffusion term to Eq. [7] as follows

d ~M

dt
¼ g � ~M � ~B0

� �
excitation in B0

þ

Mx

T2
My

T2
M0�Mz

T1

0
BB@

1
CCA

transverse; longitudinal relaxation

þDr2 ~Mdiffusion

[8]

The implication of the Bloch–Torrey equation is

that we could obtain a signal when there is no diffu-

sion process. Although this is quite possible under

isolated cases, however, within the realm of NMR

medical imaging, it is quite impossible to rule out

diffusion process under any circumstance. This

means that all the magnetic resonance signals that we

observe in any medical imaging or spectroscopic

methods are a consequence of all possible processes

(gradient, chemical shift, susceptibility, couplings)

taking place within the body under investigation,

including diffusion. Therefore, it would be very im-

portant and more fundamental to derive the diffusion

system directly from the Bloch NMR flow equations.

In doing so, we shall take a look at Eq. [4], based on

some set of mathematical assumptions.

MATHEMATICAL ASSUMPTIONS AND
JUSTIFICATION

Before we derive the differential equations that are fun-

damental for the analyses of NMR/MRI experiments, it

would be necessary to state the justifications for two

very important assumptions that is needed be made in

this presentation. The assumptions are as follows:

q2My

qt2
þ2v

q2My

qxqt
þ vTo

qMy

qx
þ Tgþg2B2

1 x; tð Þ� �
My ¼ 0

[9]

It is worthy of note that the term Tg þ g2B2
1 x; tð Þ is

very important in all magnetic resonance systems. In

any given NMR system, we may write

O ¼ 1
T1T2

þ g2B2
1ðx; tÞ; in which case, the following

possibilities may be encountered.

i. O ¼ 1
T1T2

þ g2B2
1, where B1 is constant–inde-

pendent of x and t.

ii. O ¼ 1
T1T2

þ g2B2
1ðxÞ, where B1(x) is independ-

ent of t.

iii. O ¼ 1
T1T2

þ g2B2
1ðtÞ, where B1(t) is independ-

ent of x.

iv. O � 1
T1T2

, where the condition 1
T1T2

>>

g2B2
1ðx; tÞ holds.

v. O � g2B2
1, where

1
T1T2

<< g2B2
1. and B1 is con-

stant–independent of x and t

vi. O � g2B2
1ðx; tÞ, where 1

T1T2
<< g2B2

1ðx; tÞ holds
vii. O � g2B2

1ðxÞ, where 1
T1T2

<< g2B2
1ðxÞ and B1

is independent t

viii. O � g2B2
1ðtÞl, where 1

T1T2
<< g2B2

1ðtÞ and B1

is independent of x.

In multiple dimensions (three dimensions mostly),

the radio frequency field has the form

gB1ðx; tÞ � gB1ð~r; tÞ. If the NMR system is designed

in such a way that the transverse magnetization takes

the form of a plane wave:

My ¼ Aemxþnt [10]

where m and n are dependent on the NMR parame-

ters. If n takes the value
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i. n ¼ �vmþ v2m2 � Oð Þ1=2 or n ¼ �vm�
v2m2 � Oð Þ1=2, Eq. [10] holds
ii. n ¼ �vmþ v2m2 � vT0m� Oð Þ1=2 or n ¼
�vm� v2m2 � vT0m� Oð Þ1=2 Eq. [10] holds;

and once the value of either n or m is fixed, the

other follows directly.

However, the form of NMR signal shown in Eq.

[10] is only possible if V is constant. That is, Eq.

[10] can be a solution to Eq. [9], only if the coeffi-

cients of the differential equation are independent of

both x and t. Therefore, cases (i), (iv), and (v) pro-

vide the necessary justification for the assumptions

made in Eqs. [9] and [10].

As an example, if we set v2m2 � O ¼ 0 in condi-

tion (i), then, m ¼
ffiffiffi
O

p
v and n ¼ � ffiffiffiffi

O
p

. The transverse

magnetization takes the form:

My ¼ Ae
ffiffi
O

p
v xþ

ffiffiffi
O

p
t [11]

Similarly, if we set m ¼
ffiffiffi
O

p
v in case (i), then

n ¼ � ffiffiffiffi
O

p
6i T0

ffiffiffiffi
O

p� �1=2
and the transverse magnet-

ization takes the form:

My ¼ Ae
ffiffi
O

p
v x�

ffiffiffi
O

p
tþi T0

ffiffiffi
O

pð Þ1=2t þ Ae
ffiffi
O

p
v x�

ffiffiffi
O

p
t�i T0

ffiffiffi
O

pð Þ1=2t
[12]

or if, m ¼ �
ffiffiffi
O

p
v in case (i), then,

n ¼ ffiffiffiffi
O

p
6 T0

ffiffiffiffi
O

p� �1=2
, the transverse magnetization

becomes

My ¼ Ae
ffiffi
O

p
v xþ ffiffiffi

O
p

tþ T0
ffiffiffi
O

pð Þ1=2t þ Ae
ffiffi
O

p
v xþ

ffiffiffi
O

p
t� T0

ffiffiffi
O

pð Þ1=2t
[13]

Provided the assumption in Eq. [9] holds, we

could therefore write:

qMy

qt
¼ �v2

To

q2My

qx2
þ Fo

To
gB1 x; tð Þ [14]

Similarly, if we set:

D ¼ �v2

To
[15]

qMy

qt
¼ D

q2My

qx2
þ Fo

To
gB1 x; tð Þ [16]

If parameter D represents the diffusion coeffi-

cient, then Eq. [16] is the equation of diffusion of

magnetization as the nuclear spins move. The func-

tion Fo

To
gB1 x; tð Þ is the forcing function, which

shows that the application of rf B1 field has an

influence on the diffusion of magnetization within

a voxel. It is interesting to note that the dimension

of Eq. [16] exactly matches that of diffusion coef-

ficient. Equation [16] as would be observed, is

only applicable when D in nondirectional. That is,

we have a constant diffusion coefficient. The

model would work quite well for molecules that

move very short distances over a very considerable

amount of time.

DIFFUSION IN MULTIDIMENSIONS WITH
CONSTANT DIFFUSION COEFFICIENT

Even with a constant diffusion coefficient, we may

observe that the transverse magnetization varies with

more than one space coordinates. In such a case, we

may generalize Eq. [16] as follows (within some lim-

ited mathematical error, if any):

qMy

qt
¼ Dr2My þ Fo

To
gB1 ~r; tð Þ [17]

where !2 is the Laplacian in the coordinate system

that correctly describe the slice under investigation

(Cartesian, cylindrical or spherical geometries).

Equation [17] is the NMR diffusion equation.

DIFFUSION WITH VARIABLE DIFFUSION
COEFFICIENT

In any situation in which the diffusion coefficient

varies in different directions, it is very crucial to

quantify them as they are because they hold impor-

tant information about the system and what is hap-

pening to the system at any instant. Hence, we may

write Eq. [16] as

qMy

qt
¼ q

qx
D
qMy

qx

� �
þ Fo

To
gB1 ~r; tð Þ [18]

Equation [18] is known as the one-dimensional

NMR diffusion equation with variable coefficient

(61, 64, 66, 67). It is worthy of note that the assump-

tions that led us to Eq. [16] may not fully apply here

because of the spatial dependence of the diffusion

coefficient. However, it is common place in applied

mathematics that constant coefficient differential

equations have variable coefficient analogs associ-

ated with them (80, 81, 82).
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DIFFUSION IN MULTIDIMENSIONS WITH
VARIABLE DIFFUSION COEFFICIENT

Variable coefficient diffusion processes are more

pronounced in multi-dimensional problems. Because

magnetic resonance processes are generally multi-

dimensional if we must pay attention to very small

changes, it would be of utmost importance to discuss

how the NMR diffusion coefficient is expected to

change in different directions. Therefore, we shall

generalize Eq. [18] as follows

qMy

qt
¼ r � DrMy

� �þ Fo

To
gB1 ~r; tð Þ [19]

where ! is the Del operator in the coordinate system

that correctly describe the slice under investigation

(Cartesian, cylindrical, or spherical).

ADVECTION–DIFFUSION IN NUCLEAR
MAGNETIC RESONANCE

In the earlier sections, we discussed the diffusion of

transverse magnetization My in a fluid which is

approximately static within the slice under investiga-

tion. In such a slice, the signal attenuation observed

is not due to nuclear spin moving away from the

imaging slice being investigated; but due to small

molecular motion within the region and molecular

interaction.

However, to investigate the diffusion process of

magnetization in a fluid moving at a uniform veloc-

ity, v, which is constant in time, we have to take the

process of advection into consideration. The equation

which describes such a process is known as the

advection equation. The advection equation (80, 81)
is the partial differential equation that governs the

motion of a conserved scalar as it is advected by a

known velocity field. It is derived using the scalar’s

conservation law, together with Gauss’s theorem,

and taking the infinitesimal limit. The diffusion–

advection equation (a differential equation describing

the process of diffusion and advection) is obtained by

adding the advection operator to the main diffusion

equation. In the Cartesian coordinates, the advection

operator (80, 81) is

~v � r ¼ vx
q
qx

þ vy
q
qy

þ vz
q
qz

where the velocity vector v has components vx, vy,
and vz in the x, y, and z directions, respectively.

Based on the assumptions in Eqs. [10] and pro-

vided that n ¼ �vm6 v2m2 � Oð Þ1=2 (where V is in-

dependent of x and t), we could write

q2My

qt2
þ 2v

q2My

qxqt
þ Tg þ g2B2

1 x; tð Þ� �
My ¼ 0 [20]

It follows that

vTo
qMy

qx
þ To

qMy

qt
¼ �v2

q2My

qx2
þ FogB1 x; tð Þ [21]

v
qMy

qx
þ qMy

qt
¼ � v2

To

q2My

qx2
þ Fo

To
gB1 x; tð Þ [22]

provided that

D ¼ � v2

To
[23]

and

v
qMy

qx
þ qMy

qt
¼ D

q2My

qx2
þ Fo

To
gB1 x; tð Þ [24]

where D is the diffusion coefficient, and because v is

the fluid velocity, Eq. [24] is the diffusion–advection

equation for the NMR magnetization. It is very inter-

esting to note that Eq. [24] exactly matches the

advection equation without any special transforma-

tion whatsoever. Equation [24] is exactly the one-

dimensional NMR diffusion–advection equation with

constant coefficient. This means that the fluid veloc-

ity v and the diffusion coefficient D are constant in x.

ONE-DIMENSIONAL DIFFUSION–
ADVECTION WITH VARIABLE DIFFUSION
COEFFICIENT

If the fluid velocity and the diffusion coefficient D
are both dependent on the space variable x, we need

to re-write Eq. [24] as follows:

q
qx

vMy

� �þ qMy

qt
¼ q

qx
D
qMy

qx

� �
þ Fo

To
gB1 x; tð Þ

[25]

In this case, we may write v = v(x) and D = D(x).
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DIFFUSION–ADVECTION IN
MULTIDIMENSIONS WITH CONSTANT
DIFFUSION COEFFICIENT

When the transverse magnetization could be

observed to change considerably in different spatial

directions, we may generalize Eq. [24] as (within

some limited mathematical error, if any):

vrMy þ qMy

qt
¼ Dr2My þ Fo

To
gB1 ~r; tð Þ [26]

where !2 is the Laplacian and ! is the Del operator

(~v � r is the advection operator), in the coordinate sys-

tem that correctly describes the slice under investigation.

D and v are both independent of the spatial coordinate x.
We shall write out Eq. [26] in different coordinate sys-

tem because of their often confusing nature:

Rectangular Geometries: The NMR diffusion–

advection equation in this case has the form

v
qMy

qx
þ qMy

qy
þ qMy

qz

� �
þ qMy

qt

¼ D
q2My

qx2
þ q2My

qy2
þ q2My

qz2

� �
þ Fo

To
gB1 ~r; tð Þ [27]

Cylindrical Geometries: In cylindrical geometry,

the NMR diffusion - advection equation is given as

v
qMy

qr
þ1

r

qMy

qf
þ qMy

qz

� �
þqMy

qt

¼D
q2My

qr2
þ 1

r

qMy

qr
þ 1

r2
q2My

qf2
þq2My

qz2

� �
þFo

To
gB1 ~r; tð Þ

[28]

Spherical Geometry: The NMR diffusion–advec-

tion equation in spherical geometries has the form

v
qMy

qr
þ 1

r

qMy

qy
þ 1

r sin y
qMy

qf

� �
þ qMy

qt

¼ D
1

r2
q
qr

r2
qMy

qr

� �
þ 1

r2 sin2 y

q2My

qf2

�

þ 1

r2 sin y
sin y

qMy

qy

� ��
þ Fo

To
gB1 ~r; tð Þ ½29�

DIFFUSION–ADVECTION IN
MULTIDIMENSIONS WITH VARIABLE
DIFFUSION COEFFICIENT

The NMR diffusion–advection equation with variable

coefficient could be obtained from Eq. [26] as (69):

r� vMy

� �þ qMy

qt
¼r� DrMy

� �þFo

To
gB1 ~r; tð Þ [30]

We have to re-write the advection operator (the

first term on the left hand side of Eq. [30]) because

the fluid velocity is now spatially dependent.

Generally speaking, the advection term for the trans-

verse magnetization is r � vMy

� �
, the expansion of

which is given as:

r � vMy

� � ¼ r � vð ÞMy þ v � rMy

When the fluid velocity is constant, r:v ¼ 0 and

then, r � vMy

� � ¼ vrMy. This is very similar to the

case of incompressible fluid in fluid dynamics (83).
Rectangular Geometries: The NMR diffusion

equation describing this case has the form (71, 72)

q vxMy

� �
qx

þ q vyMy

� �
qy

þ q vzMy

� �
qz

þ qMy

qt

¼ q
qx

Dx
qMy

qx

� �
þ q
qy

Dy
qMy

qy

� �
þ q
qz

Dz
qMy

qz

� �

þFo

To
gB1 ~r; tð Þ ½31�

Cylindrical Geometries: If the slice or voxel has

a cylindrical geometry, the NMR diffusion equation

gives (71, 72)

q vrMy

� �
qr

þ 1

r

q vfMy

� �
qf

þ q vzMy

� �
qz

þ qMy

qt

¼ 1

r

q
qr

Drr
qMy

qr

� �
þ 1

r2
q
qf

Df
qMy

qf

� �

þ q
qz

Dz
qMy

qz

� �
þ Fo

To
gB1 ~r; tð Þ ½32�

We have used the definition for the advection term

as given by the term r � vMy

� �
.

Spherical Geometries: For a slice or voxel that

has spherical geometry, the equation becomes (71, 72):

q
qr

vrMy

� �þ 1

r

q
qy

vyMy

� �þ 1

r sin y
q
qf

vfMy

� �þ qMy

qt

¼ 1

r2
q
qr

Drr
2 qMy

qr

� �
þ 1

r2 sin y
q
qy

Dy sin y
qMy

qy

� �

þ 1

r2 sin2 y

q
qf

Df
qMy

qf

� �
þ Fo

To
gB1 ~r; tð Þ ½33�

A MODEL APPLICATION OF THE
MATHEMATICAL FORMULATION FOR THE
ANALYSIS OF DIFFUSION MAGNETIC
RESONANCE ANGIOGRAPHY

About 55% of the blood is composed of a liquid

known as plasma. The rest of the blood is made of
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three major types of cells: red blood cells (also

known as erythrocytes), white blood cells (leuko-

cytes), and platelets (thrombocytes). The blood

plasma consists predominantly of water and salts-

which makes them very good for NMR analysis. The

flow of blood within its vessels is made up of two very

obvious diffusion processes which in actual sense,

consequence of a single physiological process; the dif-

fusion of blood components from one point in the ves-

sel to the other and the diffusion of same across the

vessel walls. Although they are well connected, only

the latter is a normal diffusion process. However, for

proper monitoring of the delivery of blood compo-

nents with reference to the flow within the vessels, we

need to use the former in which the components dif-

fuse in the forward direction up to the point at which

they are absorbed across the walls. Provided that the

blood component under investigation is NMR sensi-

tive, we could follow its diffusion by monitoring its

NMR signal emitted at its unique resonant frequency

such that immediately the substance is absorbed into

the interstitial, the NMR signal decays. As long as

they are not all absorbed at the same point, a success-

ful absorption is observed as decaying signal along the

direction of blood flow. This view can be very impor-

tant in the study of sickle cell anemia and finding a

treatment to the genetic disorder. This is because, we

may be able to visualize blood vessels pores that are

blocked by the sickle cell and find out the factor that

makes the erythrocytes rigid. It is expected that the

diamagnetic property of the oxyhemoglobin that

makes it difficult to deliver the oxygen on it would be

very useful here. Hence, a very slowly decaying signal

or nondecaying signal could be the indication of some

form of problem with the vessel.

Therefore, a very porous blood vessel (normal

blood vessel) would appear as if it is a pipe that is

allowing free diffusion of the components with a sub-

stantial diffusion coefficient while a problematic ves-

sel would either have its dimension reduced (when

stenosis is present) or it would appear to be reduced

in dimension ( especially when the pores are blocked

such that diffusing components are unable to enter

the interstitial fluid and so they are always hanging

around while new ones from the arterial blood are

showing up). Then we may assume that the diffusion

coefficient is a function of the location so that we can

characterize it from point to point.

BLOOD FLOW AND DIFFUSION IN
VESSELS WITH CONSTANT DIMENSIONS

It is expected that in normal blood flow, the motion

is slow well enough such that components diffuse

almost freely and the normal blood pressure in this cir-

cumstance makes the vessels dimensions approxi-

mately constant while blood flows through and then we

say that the diffusion coefficient is fairly constant. We

shall consider the blood vessel as a cylindrical structure

whose radius does not change substantially (there are

limited dilation and constriction).Therefore, we have a

diffusion process given by Eq. [17] as (71, 72)

qMy

qt
¼ D

q2My

qr2
þ 1

r

qMy

qr
þ 1

r2
q2My

qf2
þ q2My

qz2

� �

þFo

To
gB1 ~r; tð Þ ½34�

Provided that the RF power received by each

blood component within the voxel is independent of

their spatial location and because the transverse mag-

netization would only vary in the direction of fluid

flow (taken to be the z-direction) and in the direction

of component absorption (the radial direction) into

the vessel walls, the diffusion equation becomes

qMy

qt
¼ D

q2My

qr2
þ 1

r

qMy

qr
þ q2My

qz2

� �
þFo

To
gB1 tð Þ [35]

If we write Myðr; z; tÞ ¼ Mycðr; z; tÞ þ wcðtÞ

w0
c ¼

Fo

To
gB1 tð Þ [36]

It follows that
qMyc

qt ¼ D
q2Myc

qr2 þ 1
r
qMyc

qr þ q2Myc

qz2

� 	

By the usual separation of variables method, we

have the following two equations

dGycðtÞ
dt

¼ �a2
0DGycðtÞ [37]

1

Ryc

d2Ryc

dr2
þ 1

rRyc

dRyc

dr
¼ � 1

Zyc

d2Zyc
dz2

� a2
0 [38]

Equation [38] must also be equal to a constant x20

1

Ryc

d2Ryc

dr2
þ 1

rRyc

dRyc

dr
¼ � 1

Zyc

d2Zyc
dz2

� a2
0 ¼ �x20

giving two distinct differential equations (71, 72):

d2Ryc

dr2
þ 1

r

dRyc

dr
þ x20Ryc ¼ 0 [39]

d2Zyc
dz2

¼ � a2
0 � x20

� �
Zyc [40]
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Equation [37] has the solution:

GycðtÞ ¼ a21e
�a2

0
Dt [41]

Equation [39] is the Bessel differential equation

(of order zero), the solution of which is given as

RycðrÞ ¼ a22J0ðx0rÞ þ a23Y0ðx0rÞ [42]

We shall require that our solution be finite at the

origin so that Bessel function of the second kind is

equated to zero

RycðrÞ ¼ a22J0ðx0rÞ [43]

Also, the solution to Eq. [40] gives that

ZycðzÞ¼ a24 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0�x20

q� �
zþa25 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0�x20

q� �
z

[44]

Myc ¼ J0ðx0rÞ A24 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 � x20

q� �
z




þB24 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 � x20

q� �
z

�
e�a2

0
Dt ½45�

From Eqs. [34] and [35], we have

My ¼ J0ðx0rÞ A24 cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 � x20

q� �
z




þB24 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 � x20

q� �
z

�
e�a2

0
Dt þ

Zto
0

Fo

To
gB1 tð Þdt ½46�

where to is defined as usual. At maximum signal, the

equilibrium magnetization factor, Fo in Eq. [46] is

equal to zero, if we put:

a2
0 ¼ x20 ¼ g2G2d2

Equation [46] becomes a Gaussian distribution of

the form:

ln
My

A24J0ðx0rÞ
� �

¼ �x20Dt [47]

The simple expression in Eq. [47] is known as the

Stejskal-Tanner formula for diffusive attenuation

which highlights how variations in the spatial scale

parameter, x0 and the diffusion time t, independently

affect the signal attenuation. In a medium in which

water does not move freely—in which it is confined

within internal compartments (restricted), is reflected

by obstacles but still free to meander relatively freely

throughout the medium (hindered), or experiences

higher diffusivity in some directions and lower in

others (anisotropic)—this simple relationship no lon-

ger holds. Still, the approach used to derive Eq. [47]

can be generalized to treat each of these more com-

plex cases. Therefore, the imaging equation takes the

form (78, 81):

SðtÞ ¼
Z

J0ðltÞe�Dtdt¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þD2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0vÞ2 þD2

q
[48]

where r ¼ vt and x0v¼ l
Figures 1 and 2 demonstrate the variations of the

output signal S(t) with the parameters l ¼ x0v and

the diffusion coefficient, D, based on Eq. [6]. The

different choices of velocities and diffusion coeffi-

cient are indicative of specific physiological proc-

esses (for example, blood vessels are of different

sizes, diffusion coefficients and hence the varying

speed of blood flows) so that for any combination

of D and v, we have a knowledge of the magnetic

resonance setup for which serious signal amplifica-

tion is required. It is shown that the fluid velocity

v, diffusion coefficient D and the NMR imaging pa-

rameter x0 can easily be inferred from the NMR

signal. However, D does not have significant effect

on the values of S(t) because we considered blood

vessel of uniform cross section. It is observed in

Fig. 1 that the NMR signal decreases significantly

with increase in fluid velocity. This indicates that

the analytical method applied in this study can be

very useful at the molecular level. In addition, vari-

ation of the NMR signal with the NMR parameter

x0 can be very useful in magnetic resonance angi-

ography as a good complement to the Stejskal–Tan-

ner formulation.

DISCUSSIONS

Bloch NMR flow equations as discussed in detail

above are not just theoretical exercises but can be

used to characterize and solve real life problems in

an interdisciplinary and multidisciplinary way. The

basic equations derived from the Bloch NMR flow

equations are quite interesting, motivating and excit-

ing. The NMR diffusion differential equations pre-

sented in various geometries and coordinates is an
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intrinsic property of the fundamental Bloch NMR

flow equations which can be solved to accurately

extract the MRI physics direct from the Bloch NMR

equations without the need to import the diffusion

term. These equations have been solved analytically

in the specified coordinates for the analyses of diffu-

Figure 1 Plots of the output signal S(t) against the diffusion coefficient D and the parameter xo
for fluid velocities v (a) 0.5 m/s, (b) 1.0 m/s, (c) 1.5 m/s, (d) 3.0 m/s, (e) 5.0 m/s, (f) 10.0 m/s,

(g) 20.0 m/s, (h) 25.0 m/s, (i) 30 m/s.

Figure 2 Plot of the output signal S(t) against l ¼ x0v for (a) cerebrospinal fluid (D ¼ 3.2 �
103m2/s) (b) white matter of cerebrum (D ¼ 6 � 104 m2/s) (c) grey matter of cerebrum

(D ¼ 8� 104 m2/s).
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sion and perfusion processes in restricted geometries

(66–79).
It can be interesting to note that Eq. [10] gives

the general form of the (complex) transverse

magnetization of the Bloch NMR flow equation.

Equation [10] is the magnetic resonance imaging

equation (75) which can be controlled depending on

the values assigned to the constants m and n. If m ¼
(iggt k) . n, the imaging equation then takes

the form

SðtÞ ¼ A

Z
MoðxÞe�iggt:xdx

where MoðxÞ ¼ ekx and, A ¼ ekF is a complex arbi-

trary constant. A good choice for a collection of

pulse sequences has been shown (84).
Although, a translational mechanical analysis of

Eq. [6] has been presented (78), it may be inform-

ative to mention that the response of certain net-

work of tuned circuits to a unit NMR impulse

applied in the first circuit (measurement) can be

described by the set of Eq. [6] where V ¼ 1 as

given below:

d2My1

dt2 þ To
dMy1

dt þMy1 ¼ Mo

T1
gB1 tð Þ ¼ IðtÞ

d2My2

dt2 þ To
dMy2

dt þMy2 ¼ My1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
d2MyZ

dt2 þ To
dMyZ

dt þMyZ ¼ MyZ�1

9>>>>>=
>>>>>;

[49]

The transverse magnetization, MyZ is thus given

as follows:

MyZ ¼ G½ð2Zþ 1Þ=2�
Gð2ZÞ

2t

r

� �ð2Zþ1Þ=2
e
To
2
tJð2Zþ1Þ=2ðrtÞ

[50]

where, r ¼ 1� T2
o

4
, J(rt) is Bessel function of order Z

with a parameter r and G( ) is the gamma function.

Then,

MyZ ¼ G½ð2Zþ 1Þ=2�
Gð2ZÞ

8t

4� T2
o

� �ð2Zþ1Þ=2

e
To
2
tJð2Zþ1Þ=2 ð1� T2

o

4
Þt

� �
½51�

The plots in Figs. 3 and 4 show the interesting

interplay of the time, relaxation rate the transverse

magnetization in translational mechanical analysis.

As shown above, the transverse magnetization peaks

up on both sides of the time axis at specific values of

the relaxation rate To (Eq. [51]) and Figs. 3 and 4

demonstrate the importance of Eqs. [49], [50], and

[51] in spectroscopic studies where the relaxation

times provide the major magnetic resonance contrast.

Different molecules resonate at different frequencies

and this has direct bearing on the relaxation rate To,
which gives different values for different molecules

and molecular environment. The general behavior of

the magnetic resonance signals (in terms of the trans-

verse magnetization My) as To and times varies are

demonstrated in the figures. Slight variations are defi-

nitely expected for different molecules and similar

molecules taking part in different chemical reactions

using the analytical solutions presented in this study

but such variations would always present a functional

behavior as shown in the figures.

It should be mentioned that using appropriate

mathematical procedures, Eq. [4] can also be trans-

formed into wave-like equation

v2
q2My

qx2
þ q2My

qt2
¼ Mo

T1
gB1 tð Þ

provided that

nTo ¼ � 1

T1T2
; 2n ¼ �To for g2B2

1 <<
1

T1T2

and

nTo ¼ �g2B2
1ðtÞ ; 2n ¼ �To for g2B2

1ðtÞ >>
1

T1T2

Similarly, Eq. [4] can be transformed into Euler’s

equation

v2
q2My

qx2
þ 2v

q2My

qxqt
þ q2My

qt2
¼ Mo

T1
gB1 tð Þ

Provided that

2nTo ¼ � 1

T1T2
; n ¼ vm for g2B2

1 <<
1

T1T2
and 2nTo

¼ �g2B2
1ðtÞ; n ¼ vm for g2B2

1ðtÞ >>
1

T1T2

It is interesting to note that the wave and Euler’s

equations can be expressed in cylindrical and spheri-

cal coordinates to model multidimensional problems.

The analytical solutions of all the differential equa-
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tions derived in this presentation and their NMR

properties can be fundamental toward understanding

the basic NMR physics of extracting the relevant

flow parameters to solve fluid flow problems in phys-

ical, biological, biomedical, geophysical, environ-

mental, communication, agricultural, and medical

sciences due to the abundant mathematical tools

available to solve the equations analytically. The

most fascinating point about these equations and

their solutions is that we may do NMR without nec-

essarily having the big equipments and the rigorous

data processing. It should be particularly noted that

this study is very much concerned with analytical

methods that the Bloch NMR flow equations can pro-

vide for different physical, biomedical, geophysical,

medical, and environmental situations even at the

molecular level for the purpose of interdisciplinary

approach to solve difficult problems.

A model application of the mathematical for-

mulation for the analysis of diffusion magnetic

resonance angiography is provided as a simple

illustration to show the physical interpretation of

one of the eight assumptions made earlier in this

presentation and the given mathematical justifica-

tions. This practical example with typical numeri-

cal and experimental parameters applied is valid

Figure 3 Plots of the transverse magnetization MyZ against the relaxation rate To and time for

(a) Z ¼ 1, (b) Z ¼ 2, (c) Z ¼ 3, (d) Z ¼ 4, (e) Z ¼ 5, (f) Z ¼ 6.
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only if O � 1
T1T2

, where the condition
1

T1T2
>> g2B2

1ðx; tÞ holds in Eqs. [4], [6], and [9].

Similarly, the response of certain network of tuned

circuits to a unit NMR impulse applied in the first

circuit (measurement) can be described by the set of

Eqs. [6], [49]–[51];

where V ¼ 1 or 1
T1T2

¼ 1� g2B2
1ðx; tÞ.

This is valid for materials which have their relaxa-

tion parameters defined within the range 0 , Tg , 1.

This may be particularly useful for nonviscous

liquids where T1 � T2 . 1.0s. It may also be useful

for the analysis of cerebrospinal fluid of T1 ¼ 2.4 s

and T2 ¼1.4 s at 1.5 T.

In our current investigation, it is exciting and

motivating to note that Eq. [5] is transformable to

Bessel equation of order n and parameter a where

n ¼ t
T1T2

and a ¼ gG:t
In this practical situation, O ¼ 1

T1T2
þ g2B2

1ðxÞ,
where B1(x) is independent of t, a is the NMR pulse,

Figure 4 Plots of the transverse magnetization MyZ against the relaxation the time (a) Z ¼ 1,

(b) Z ¼ 2, (c) Z ¼ 3, (d) Z ¼ 4, (e) Z ¼ 5, (f) Z ¼ 6 (T1 ¼ 1.00 s, T2 ¼ 0.25 s).
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G is a constant magnetic field gradient, t is the inter-
val between two pulses and g is the gyromagnetic ra-

tio. This assumption has allowed the use of the abun-

dantly available and very rich Bessel functions and

properties to address difficult NMR problems as will

be presented in subsequent studies. Generally, the

eight mathematical assumptions in this study are

practical or experimental conditions that should be

accurately defined for any NMR, MRI, or fMRI

experiment.

CONCLUSION

Analytical models of the Bloch NMR flow equations

ultimately cannot operate in a vacuum: the models

must be used for solving problems, generally coming

from outside of the restricted NMR/MRI experimen-

tal community. Often, however, the problems

addressed end up requiring background in a number

of fields rather than just in the sophisticated MRI

workstations, and Laboratories mostly located in the

advanced hospitals and oil companies. Fortunately,

all or most of the problems solvable by NMR/MRI

techniques are based on the fundamental Bloch NMR

equations. These problems end up requiring addi-

tional knowledge of classical mechanics, graphics,

mathematics, physics, chemistry, biology, and basic

engineering knowledge. Typically, geometrical fac-

tors affect the radiographic image produced by MRI

for medical and geophysical purposes, regardless of

the format. Each clinical or geophysical study

requires its own acquisition parameters to obtain the

best quality suitable for the investigation. Despite

over 50 years of the use of NMR/MRI for various

investigations, the choice of technique parameters

still relies to a great extent on experience. Scientific

efforts to optimize the choice in terms of finding the

parameter settings which yield sufficient image qual-

ity at the lowest possible cost are still rare. True opti-

mization requires 1) estimation of the image quality

needed to make a correct diagnosis and 2) methods

to investigate all possible means of achieving this

image quality in order to be able to decide which of

them gives the lowest cost. These problems could be

approached purely mathematically by solving the

fundamental Bloch NMR flow equation analytically.

As such it presents a significant challenge, either for

a purely mathematical approach or as a minimization

problem using successive approximations. In this

presentation, calculations are based on the resolution

of mathematical models in Cartesian, cylindrical, and

spherical polar coordinates representing the geometri-

cal questions of a typical magnetic resonance imaging

method (62–65, 85–87). Boundary conditions are

involved in the resolution algorithm at different stages.

Generally, we considered the transverse magnetization

My, a function which describes the induced EMF in a

typical NMR/MRI system. This function changes over

time depending on the state of the sample based on the

values of T1 and T2 relaxation parameters and the

applied gradient. The boundary conditions are intro-

duced based on Bessel functions in cylindrical coordi-

nate and Bessel with Legendre polynomials in the case

of spherical geometries (69–74, 79). The advantage of
these models is that, the Mathematician, Computer sci-

entist, theoretical Physicist and the engineer can apply

their tools and contribute to this fast developing and

most exciting field of our time without acquiring the

most sophisticated equipment.
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