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ABSTRACT

Full Name . [Ismail Adewale Olumeghbon]

Thesis Title : [Two dimensional J-matrix approach to quantum scattering]

Major Field . [Physics]

Date of Degree : [December, 2013]

We present an extension of the J-matrix method of scattering to two dimensions in
cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian,
Ho, which is exactly solvable in the sense that we select a square integrable basis set that
enable us to have an infinite tridiagonal representation for Ho. Expanding the
wavefunction in this basis makes the wave equation equivalent to a three-term recursion
relation for the expansion coefficients. Consequently, finding solutions of the recursion
relation is equivalent to solving the original Ho problem (i.e., determining the expansion

coefficients of the system's wavefunction).

The part of the original potential interaction which cannot be brought to an exact
tridiagonal form is cut in an NxN basis space and its matrix elements are computed
numerically using Gauss quadrature approach. Hence, this approach embodies powerful
tools in the analysis of solutions of the wave equation by exploiting the intimate
connection and interplay between tridiagonal matrices and the theory of orthogonal

polynomials. In such analysis, one is at liberty to employ a wide range of well established

xii



methods and numerical techniques associated with these settings such as quadrature

approximation and continued fractions.

To demonstrate the utility, usefulness, and accuracy of the extended method we use it to

obtain the bound states for an illustrative short range potential problem.
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CHAPTER 1

INTRODUCTION

Theoretically, steady state solution of scattering problem can be obtained by solving the

time-independent energy eigenvalue equation (H —E)|;(>=O, where H represents the

Hamiltonian operator and E the positive continuous energy. It is a difficult challenge to
solve the eigenvalue equation analytically for dynamic system in general. Only matrix
diagonalization gives all possible eigenvalues, but fails to produce scattering states
solution. This anomaly led to the emergence of the tri-diagonalization approach upon

which the J-matrix method is built.

J-matrix is an algebraic technique suitable for solving eigenvalue problems and obtaining
scattering information by employing the square integrability of the orthogonal
polynomials. It deals with the reference Hamiltonian analytically, and solves the potential
matrix element approximately using numerical approach. Also, the square integrable
bases chosen must support a tridiagonal matrix representation. This idea gives strength to
the J-matrix approach as a good computational tool. It is this basis that provides the
parameters needed to ensure stability, convergence, and accuracy of the computational

procedure.



The J-matrix method in three dimensional form was originally introduced in 1974 [1-2],
and has since undergone several developments over the years. Some of the notable

developments include:

1. Relativistic generalization of the J — matrix method by Horodecki [3] and its
refinement by Alhaidari et al. [ 4]

2. Yamani et al. generalized the J-matrix method to any convenient L? — basis [5]

3. The case of long range potential was done by Vanroose et al. [6] with the
introduction of additional term in the three term recursion relation which takes
into account the asymptotic behavior of the potential.

4. Alhaidari et al. [7] presented the integration approach as an alternative to the
classical differential approach for regularization of the reference problem. They

also made notable developments and applications in [8], [9], [10].

In 2009, Alhaidari et al. developed the J-matrix formalism in one dimension [11]. Owing
to the achievement in one and three dimensions, it sets the stage and motivates us to
proceed in evolving the J-matrix formalism in two dimensions. This way, we would
complete the J-matrix formalism in all physical dimensions.

There has been tremendous interest in two dimensional systems in recent years especially
with the experimental realization of Graphene in 2004 [12]. Theoretical treatment of such
two dimensional systems which include potential scattering theory, has greatly increased.
Recently, Schneider et al. discussed the resonant scattering in Graphene based on the
matrix green function formalism [13]. An important question of topological concern in

two dimensional systems is the effect of the number of spacial dimensions. The



advantage of a two dimensional space can be seen in the case of Poisson’s equation for a

point charge, which is solved for (Inr) in two dimensions with a stronger singularity at

the origin rather than the r in three dimensions.

1.1  Objectives of the study

We extend the J-matrix method of scattering to two dimensions with cylindrical
symmetry, determine its tridiagonal representation, and obtain the bound states,
resonances, and scattering phase shift for an illustrative problem. The main objectives
to be achieved in this study are listed below.

Objective 1: To determine the regular solution of the J-matrix reference problem in
Laguerre and oscillator basis. This is termed the Sine-like solution

Objective 2: J-matrix regularization of the irregular reference solution in Laguerre
and oscillator basis. This is termed the Cosine-like solution.

Objective 3: Calculating the matrix element of the scattering potential using gauss
quadrature.

Objective 4: Numerical computation of bound state and resonances for a short range
potential.

Objective 5: Study of scattering through a short range potential and evaluation of the

associated phase shift



CHAPTER 2

LITERATURE REVIEW

To comprehend the nature and dynamics of subatomic systems, there is need to carry
out scattering experiments. A scattering experiments, where flux of particles is
uniformly directed towards the target we seek to understand. The flux of radiation
scattered off an obstacle, with the scattered radiation containing the relevant
information about the system under study. A theory of potential scattering

formulation is needed to study and analyze scattering experiments.

kx+5
>
\ /S!cattel red radiation

>

Obstacle

Incident radiation
Figure 2.1: Schematic diagram of a typical scattering experiment

A potential function is configured in a manner that it models the scattering system
(e.g target nuclei). The proposed model is then checked against the experimental
results. The characteristic feature of such a potential function is that its range must be
finite, so that it is zero in the asymptotic region. Owing to the freedom of the incident
and scattered particles, it then only makes sense to represent them with sinusoidal
wave functions, whose phase difference (phase shift) is the carrier of information for

4



the scattering system. Mathematically, we can represent the solution of the free wave
equation by two independent sinusoidal functions like sin(kx) and cos(kx + 5), with x
representing the space of configuration. The phase shift 6 dependents on angular
momentum and the model potential parameter and energy.

For a large class of physical models, the Hamiltonian can be decomposed into the
sum of two components, namely the reference Hamiltonian, Ho and the potential V,
such that H = Hy + V. The reference Hamiltonian is simple; possess an infinite range
and a high degree of symmetry, it can thus be solved analytically. For the potential, it
can either be solved by perturbation methods if its contribution is infinitesimal or by
algebraic methods if it is limited to a region confined in function or configuration
space. For the class of scattering problems to be examined, it is assumed that the
potential will vanish at the asymptotic region that is beyond the finite region. As a

result, the solution to the problem can be obtained by solving the reference wave

equation(Ho—E)|gu>:0. Using the algebraic scattering method, the kinematic

solution of the reference Hamiltonian is obtained by calculating the matrix
components of the operators in a complete set of square integrable bases. The two
asymptotic solutions of the reference Hamiltonian are written as infinite series of
square integrable basis functions that are in equivalence with the Hamiltonian’s
domain. The basis however, is required to support a tridiagonal matrix with infinite
representation of the wave operator. This sort of Tridiagonalization creates a regular
solution space. This special basis, when extended to infinite space, will produce
continuous value of energy, which is an important requirement for quantum

scattering. In addition, the solution of the reference Hamiltonian is obtained as an



orthogonal polynomial which obeys three term recursion relations based on the

infinite tridiagonal matrix representation.

2.1 Basis set technique and diagonalization

The Evolution of fast computing machines has made it possible to perform structural
calculations in both nuclear and atomic systems. The Hamiltonian of such systems is
represented by a matrix using a finite bound state like basis. The matrix so constructed is
then diagonalized to yield discrete energy eigenvalues and eigenfunctions which
approximated the energy spectrum of the system and the resulting discrete state’s wave
function. The problem with the use of diagonalization is that it only provides us with
information on discrete states and not on the continuous spectrum of the Hamiltonian.
This led theorist to believe that the basis set technique could not be used for the purpose

of extracting scattering information.

However, the work of Hazi and Taylor [14] gave a glimpse of hope by expanding a set of
discrete exponentially decaying function followed by diagonalization of the Hamiltonian
to describe resonances. Their approach is called the “stabilization method”, where they
stabilize real discrete eigenvalues around the resonance energy by varying the
computational parameters. The stabilization method produced good approximations
around the resonant energies regions. Although the work of Hazi and Taylor was based
on a one dimensional potential model, stabilization method has accurately obtained

resonance energies of ideal systems like e” and H, [15].



Building on the stabilization technique, the Reinhardt group at Harvard was able to obtain
scattering information from discrete eigenvalues of both the reference and scattering

Hamiltonian [16]. They were able to accurately obtain scattering results using the
assumption that if the basis {¢n}r1_: is a certain Laguerre function, then the abscissas fall

as the transformed zeros of an orthogonal polynomial with known properties [17]. This
ensures that the discrete eigenfunctions of the finite N X N Hamiltonian H,, can be

expressed as a finite sum of L? basis as

N-1
¥ (E)) =By (E)X_P.(E)|4.) (2.1.1)
n=0
Where P, (E) is an orthogonal polynomial.

Heller and Yamani of the Harvard group proposed that the potential be represented by a
finite subset of complete basis. This idea gave birth to the J-matrix method. The name
arose from the fact that the operator J = H, — E in either Laguerre or oscillator basis

function is Tridiagonal.

2.2 Orthogonal polynomials and recursion relation

Let {R,(x)} be a complete set of orthogonal polynomials in the space with

n

coordinate X e[a,b] c R. Orthogonality can be defined in terms of the weight function

p(X) as



