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A B S T R A C T

Regarding their ability to enhance conventional thermal oils' thermophysical properties, oil-based hybrid nanoflu-
ids have recently been widely investigated by researchers, especially on lubrication and cooling application in
the automotive industry. Thermal conductivity is one of the most crucial thermophysical properties of oil-based
hybrid nanofluids, which has been studied in a minimal case of studies on the specific types of them. In this
research, for the first time, a comprehensive data-intelligence analysis performed on 400 gathered data points
of various types of oil-based hybrid nanofluids using a novel hybrid machine learning approach; the Extended
Kalman Filter-Neural network (EKF-ANN). The genetic programming (GP) and response surface methodology
(RSM) approaches were examined to appraise the main paradigm. In this research, the best subset regression
analysis, as a novel feature selection scheme, was provided for finding the best input parameter among all ex-
isting predictive variables (the volume fraction, temperature, thermal conductivity of the base fluid, mean diam-
eter, and bulk density of nanoparticles). The provided models were examined using several statistical metrics,
graphical tools and trends, and sensitivity analysis. The results assessment indicated that the EKF-ANN in terms
of (R=0.9738, RMSE=0.0071 W/m.K, and KGE=0.9630) validation phase outperformed the RSM (R=0.9671,
RMSE=0.0079 W/m.K, and KGE=0.9593) and GP (R=0.9465, RMSE=0.010 W/m.K, and KGE=0.9273), for
accurate estimation of the thermal conductivity of oil-based hybrid nanofluids.

© 2021

Nomenclature

Mallows Coefficient
Dp

Particle diameter, nm

Thermal conductivity of base fluid (W/m.K)

Thermal conductivity of nanofluid (W/m.K

Abbreviations: ASRE, Absolute standardized relative error; ANN, Artificial neural net-
works; AIC, Akaike's information criterion; EG, Ethylene glycol; EKF-ANN, Extended
Kalman Filter-Neural network; GP, Genetic programming; KGE, Mean Square Root Error;
LMI, Legates-McCabe's Index; MAPE, Mean absolute percentage error; MR, Multiple re-
gression; PC, Amemiya's Prediction Criterion; , Residual sum of squares; RMSE, Root
mean square error (W/m.K); RD, Relative Error; RSM, Response surface methodology; SR,
Standard residual.
⁎ Corresponding author:

E-mail addresses: M.jamei@shhut.ac.ir (M. Jamei); Aminasadi64@gmail.com (A.
Asadi)

Thermal conductivity of nanoparticle (W/m.K)
IA

Index of agreement
m

Mass (gr)
Pc

Pearson correlation coefficient
R

Correlation coefficient

Standard deviation
T

Temperature, (K)
Greek

Nanoparticle volume fraction (%)

Bulk fluid density, gr/cm3
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Density of the nanoparticles, gr/cm3

Density of the base fluid, gr/cm3

Thermal conductivity (W/m.K)
Subscripts

bf
Base fluid

i
Nanoparticle ID

nf
Nanofluid

np
Nanoparticle

p
particles

1. Introduction

The advent of nanofluids, as a suspension of nano-sized materi-
als into different working fluids, resulting in improved thermophysical
properties, was a real breakthrough in heat transfer applications. Af-
ter the pioneering study on thermophysical properties of a nanofluid by
Choi et al. [1], many researchers conducted different researches on var-
ious properties [2–5] and applications of nanofluids [6–9]. Moreover,
due to nanofluids' importance in heat transfer applications, various re-
view papers have been published, summarized the published literature
in different aspects of nanofluids [10–15].

Hybrid nanofluids result from the dispersion of two or more dif-
ferent nanomaterials combinations in a base fluid or base fluids [16].
They are generally preferred for heat transfer applications because they
are characterized by higher thermal conductivity relative to the regu-
lar nanofluids [17]. Another idea behind combining nanomaterials to
form a hybrid nanofluid is to allow for the synergizing of the individ-
ual nanomaterials' physio-chemical properties. Thereby giving rise to a
nanofluid with improved thermal conductivity and rheological proper-
ties compared to their individual thermal conductivity [18]. The signif-
icant enhancement in hybrid nanofluids' thermal conductivity has made
it imperative for use in different industrial applications. Heat transfer
devices and applications, such as heat pipes [19,20], solar collectors
[21,22], and so forth, require improved thermal properties for efficient
transfer of heat. Spherical silica/MWCNT hybrid nanofluid showed im-
proved performance as a better fluid in drilling operations relative to
mono nanofluids [23,24]. In addition, hybrid nanofluids have been em-
ployed in power generation [25], solar thermal collectors [26], and
outer-flow heat exchanger [27].

Thermal conductivity is a crucial thermophysical property that gov-
erns heat transfer rate in materials like hybrid nanofluids. As the thermal
conductivity increases, the hybrid nanofluid's thermal efficiency will be
increased owing to the associated convectional currents between the
nanomaterials and the base fluids [28]. Many studies on the thermal
conductivity of hybrid nanofluids reported an enhancement in the ther-
mal conductivity compared to mono nanofluids [29–33]. Such enhance-
ment can be affected by several underlying factors; the mixture or com-
posite's synergistic effect, the nanofluid's stability, and the degree of dis-
persion of the base fluid. However, a few studies [23,34] recorded a
reduction in hybrid nanofluids' thermal conductivity and alluded the re-
duction to the underlying incompatibility issues of the combining nano-
materials. In another instance, the low stability of the hybrid nanofluid
caused by the synthesis method resulted in a decrease in the hybrid
nanofluid [35].

Experimental investigation of hybrid nanofluids revealed that the
thermal conductivity depends on properties such as the nanoparticles'
size and shape [36], pH of the nanofluid, base fluid type, and the
nanoparticles' volume concentration, temperature, to mention but a
few [37–39]. An increase in temperature raises the kinetic energy
of the hybrid nanomaterials, which causes the collision rate to in-
crease and increase thermal conductivity [40–45]. An experi

mental investigation involving water-based f-MWCNT/f-HEG [46], DI
water-based Ag/HEG [47], EG based Al/Zn, and water-based Al2O3/Cu
[33] showed enhancement in thermal conductivity as the volume frac-
tion and temperature increases. Furthermore, the choice of base fluid
for a hybrid nanofluid formation influences the thermal conductivity.
For instance, water-based hybrid nanofluid produces a higher thermal
conductivity than ethylene glycol-based hybrid nanofluid [48–50]. The
shape of hybrid nanomaterials can affect the value of the thermal con-
ductivity. Cylindrical-shaped nanomaterial, such as CNT, produces a
higher thermal conductivity than spherical-shaped nanomaterial when
dispersed in similar base fluids [51,52]. Moreover, the size of the com-
bining nanomaterials varies inversely with the thermal conductivity.
Thus, small-sized nanomaterials will possess higher thermal conductiv-
ity than large-sized ones due to their increased collision rate. The study
on EG-based Al/Zn reported a nonlinear increase in thermal conductiv-
ity as the composite or crystallite size decreases [53]. A highlight of
studies on oil-based hybrid nanofluid showing the dependence of ther-
mal conductivity on some of these factors is presented in table 1.

2. Theoretical background and data-driven based literature review

Previously, novel attempts were made by Maxwell [61], Hamiton
and Crosser [62], Jang and Choi [63], Bhattechaya et al. [64], and
Mahmid et al. [65,66] to evolve a general numerical model for calcu-
lating the thermal conductivity of nanofluids. However, none of such ef-
forts could give an accurate estimation of the thermal conductivity of
specific nanofluids. Researchers have developed empirical correlations
specific to different classes of nanofluids in the absence of a general-
ized numerical model. A few of such correlations on the thermal con-
ductivity (Knf) of oil-based hybrid nanofluid as a function of volume
fraction ( ) and temperature (T) were developed. Table 2 addresses
some of these correlations for estimating the thermal conductivity of
oil-based, EG&Water based hybrid nanofluids. Moreover, the correla-
tions proposed by Pak and Cho [67] and Mintsa et al. [61] have been
examined to validate other thermal conductivity measurements or esti-
mates for hybrid nanofluids.

So far, there is no generally applicable numerical model or corre-
lation for estimating hybrid nanofluids' thermal conductivity. Besides,
the inherent inaccuracies become apparent as a result of the under-
lying anomalous nature of nanofluids. These inadequacies pave the
way for the emergence of the machine learning (ML) approach, con-
sidering their robust predictive and generalization capabilities. The ap-
plication of ML methodologies in developing highly accurate models
for estimating nanofluids' thermophysical properties is actively on

Table 1
Experimental studies on the thermal conductivity of oil-based hybrid nanofluids.

Nanomaterial Base fluid
Thermal conductivity
improvement Reference

Al2O3-MWCNT Thermal oil 45% increase at T=50C and
=1.5%

Asadi et al.
[54]

MgO-
MWCNT

Engine Oil 65% increase at 50C and
=2%

Asadi et al.
[55]

Mg (OH)2-
MWCNT

Engine Oil 50% increase at 60C and
=2%

Asadi et al.
[56]

SiC-TiO2 Diathermic oil 8.39% increase at T=43C
and =1%

Wei et al.
[29]

Cu-Zn Vegetable oil 130% increase at 60C and
=0.5%

Mechiri et
al. [57]

Cu-Zn Vegetable oil,
Paraffin oil, SAE
oil

67% increase at 30 C and
=0.5%

Kumar et
al. [40]

SiO2-Graphene Naphthenic
Mineral oil

80% increase at 100 C,
=0.04%

Qing et al.
[58]

Silica-Ag Transformer oil 15% increase at ( =0.6%) in
Ag and ( =0.07%) in Silica

Botha et al.
[59]

WO3-Ag Transformer oil 41% increase at T=100C and
=4%

Aberoumand
et al. [60]

- Volume concentration, T-Temperature
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Table 2
The experimental based correlation for oil-based hybrid nanofluids to validate the provided AI models

Model Nanoparticles Formula Base fluid

Soltani et al.[68] WO3-MWCNTs Engine Oil
Mechiri et. al. [57] Cu-Zn Vegetable oil

Asadi et al.[54] Al2O3-MWCNT Oil
Asadi et al.[55] MgO-MWCNT Oil
Asadi et al.[56] Mg (OH)2-MWCNT Engine Oil
Pak and Cho [67] Metal oxides Water
Toghraie et al.[69] ZnO–TiO2 EG
Harandi et al. [70] F-MWCNTs–Fe3O4 EG
Esfahani et al.[71] ZnO-Ag Water
Mintsa et al.[72] Al2O3/Cuo/SiO2/ZnO- Water

going, given its proven accuracy. ML models have been constructed to
estimate viscosity [73–77], specific heat capacity [78–81], and even
thermal conductivity [82–87] using various learning algorithm such
as artificial neural networks (ANN) [75,88], support vector regression
(SVR) [78,89], genetic programming (GEP) [82], to mention but a few.
ML application in nanofluids studies involves using the nanomaterials'
physical and chemical properties and base fluids as model inputs and the
thermophysical property under investigation as the target variable. Over
the years, a few ML studies have been dedicated to estimating hybrid
nanofluids' thermal conductivity. A historical highlight of such research
efforts has been presented in Table 3.

Table 3
The highlight of machine learning studies for predicting the thermal conductivity of hy-
brid nanofluids.

Nanoparticles
Base
fluid Model inputs Methodology Ref.

Cu-Zn Water ANFIS Balla et al.
[90]

CuO-SWCNT EG-
water

MLP Rostamian
et al. [91]

MgO-MWCNT EG ANN Vafaei et al.
[92]

SWCNT-ZnO EG-
water

ANN Esfe et al.
[93]

ZnO-MWCNT EG-
water

MLP Esfe et al.
[94]

SWCNT-Al2O3 EG ANN Esfe et al.
[95]

MWCNT-SiO2 EG MLP Esfe et al.
[96]

CNT-Fe3O4 Water MLP Shahsavar et
al. [97]

SWCNT-MgO EG ANN Esfe et al.
[98]

Al2O3-SiO2 Water MLP Kannaiyan
et al. [99]

DWCNT-SiO2 EG MLP Esfe et al.
[100]

Cu-Al2O3 Water LSM Usman et
al.[101]

Various
nanoparticles

ANN Adun et
al.[86]

Various
nanoparticles

EG GEP, MT,
MLR

Jamei et al.
[82]

Various
nanoparticles

W-EG LWLR,GLP,
GEP

Pourrajab et
al. [83]

ANFIS-Adaptive Neuro-Fuzzy Interference System, MLP-Multilayer Perceptron, GEP- Ge-
netic programming, MT- Model tree, MLR- Multilinear regression

3. Dataset description and best feature selection procedure

For the development of data-driven models in this research, seven in-
fluential variables including volume fraction of nanoparticles ( ), tem-
perature ( ), the average diameter of nanoparticles for each set of parti-
cles ( and ), the thermal conductivity of the base fluid ( ), and
the density of each nanofluid (i.e., and ) were collected from 6 refer-
ences as shown in Table 4.

The descriptive statistics of the predictive variables are summarized
in Table 5. The statistical assessment of the datasets showed the max-
imum/minimum skewness (-2.144) and kurtosis (2.611) values are rel-
atively in the allowable range ([-2.2, 2.2]) [104,105], which confirms
the competence of the data to provide the predictive models. Further-
more, the Shapiro-Wilk normality test [106] indicated that none of the
parameters do satisfy the normality distribution. It is noteworthy that
the nanoparticle with the greater density ( ) is assigned subscript 1, and
that of the lighter nanoparticle ( ) is assigned subscript 2.

To develop a robust and computationally efficient AI-based model,
one needs to utilize a proper feature selection procedure that provides
a set of the most critical independent parameters. In fact, a well-suited
selection procedure reduces the computational costs of the model by de-
creasing the number of independent variables [107,108]. To determine
the optimal set of independent variables, the best subset regression al-
gorithm [109] can be employed to extract the best subsets regression
fitting all possible models. Based on three objective criteria, including
the adjusted R-squared, Mallow's coefficient [94], Akaike's information
criterion [110], and Amemiya's Prediction Criterion [111], the most
appropriate fitting models are selected [94]. These criteria are briefly
described in the following.

Mallow's coefficient
Based on the total number of k parameters and mean squared error (

(, the Mallow coefficient ( ) is defined as [94]:

Table 4
experimental datasets characteristics used for designing the data-driven models for predic-
tion of the thermal conductivity of oil-based hybrid nanofluids.

References
Number of
Data Nanoparticles Base fluid

[54] 42 Al2O3-MWCNT Pure Oil
[102] 54 TiO2-SiC Pure diathermic

Oil
[56] 56 Mg(OH)2-MWCNT Engine Oil
[68] 55 WO3- MWCNTs Engine Oil
[103] 128 TiO2, SiO2, Al2O3-

MWCNTs
Transformer Oil

[55] 65 MgO- MWCNTs Engine Oil
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Table 5
The descriptive statistics of predictive variables and targets.

Metrics T kBase knf

Minimum 0.000 15.000 10.000 0.200 15.000 0.110 0.101 0.106
Maximum 2.000 75.000 65.000 7.160 30.000 2.100 0.194 0.228
Mean 0.396 40.920 30.280 3.455 23.180 1.831 0.132 0.149
Std. Deviation 0.486 15.490 18.320 1.931 5.969 0.681 0.025 0.031
Range 2.000 60.000 55.000 6.960 15.000 1.990 0.093 0.121
Skewness 1.419 0.414 0.533 0.293 -0.402 -2.144 0.920 0.250
Kurtosis 1.406 -0.579 -0.947 0.011 -1.395 2.611 0.585 -1.238
Shapiro-Wilk test for normal distribution
W 0.793 0.959 0.873 0.881 0.774 0.404 0.859 0.916
P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Is normality test passed (alpha=0.05)? No No No No No No No No

(1)

Where stands for the residual sum of squares associated with the re-
gression model, and N represents the total number of data points.

Akaike's information criterion
Akaike's information criterion (AIC) is an estimator, which can be

used to determine the relative quality of different statistical models for a
given dataset. This means that AIC can be seen as a model selection tool.
As a criterion, the AIC parameter associated with each desirable model
is defined as [110]:

(2)

Where and are the number of samples (data points) and the number
of parameters in the model, respectively. Besides, the term is the
residual sum of squares in which stands for i-th RESS residual. Once

parameter is calculated for all models, the model associated with the
minimum value is chosen as the best one [34].

Amemiya's Prediction Criterion (PC)
Amemiya's Prediction Criterion is expressed by the following relation

[111]:

(3)

Where is the number of parameters in the model, is the number of
samples, and represents i-th RESS residual. Like AIC, a minimum
value of PC is desirable, which can be used to select the best combina-
tion set.

In this section, the mentioned criteria are used to select the best
combination of the parameters representing the optimal set of inde-
pendent variables. Considering the data given in Table 6 and also
Fig. 1 for the highest values of R2 and R2-adj along with the lowest
values of Mallow's factor, Akaike's AIC, and Amemiya's PC, it is ob-
served that the two last combinations (i.e., C6 and C7) can be con-
sidered as the best choices for the optimal combination set.

However, the density of a nanofluid is neglected in the combination C6,
while the other nanofluid density is incorporated into the combination.
Based on this point, it seems reasonable to choose the combination C7,
considering the same parameters for both nanofluids, as the best combi-
nation. As a result, the optimal set of independent parameters consists
of seven members, including temperature ( ), the volume fraction of
nanoparticles ( ), the average diameter of nanoparticles for each set of
particles ( and ), the thermal conductivity of the base fluid ( ),
and the density of each nanofluid (i.e., and ). Therefore, the thermal
conductivity of oil-based hybrid nanofluid is expressed as:

(4)

here, the particle volume fraction is defined as:

(5)

Where and are the total mass of the nanoparticles and base
fluid, respectively. In this research, 75% (300 samples) of datasets were
allocated for the training model s, and 25% of datasets were imple-
mented for validation (testing phase).

The Pearson correlation coefficient between each independent vari-
able and thermal conductivity is illustrated in Fig. 2. The Pearson cor-
relation coefficient values represent that nanofluids' thermal conductiv-
ity has the most linear correlation with the volume fraction of solids (

) and thermal conductivity of the base fluid ( ). The
results shown in Fig. 2 represent that it has a more linear correlation
with ( ) than ( ).

To decrease the computational costs of predicting procedure, the in-
dependent variables and also responses are normalized by using the fol-
lowing relation:

(6)

Here, is the primary basic value, is the normalized value, and
subscripts and stand for the minimum and maximum values of the
dataset incorporated into the predictive models, respectively.

Table 6
Best subsets regression results for determining the optimum input combination

Combo No. of variables Variables R² Adjusted R² Mallows' C* Akaike's AIC Amemiya's PC

C1 1 0.526 0.524 828.794 -3070.54 0.477
C2 2 0.720 0.719 328.678 -3279.57 0.283
C3 3 0.822 0.821 67.160 -3458.40 0.181
C4 4 0.836 0.834 33.683 -3489.16 0.167
C5 5 0.847 0.845 8.260 -3513.92 0.157
C6 6 0.848 0.8455 6.743 -3515.49 0.158
C7 7 0.848 0.84546 8 -3514.2 0.157
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Fig. 1. The values of different selection criteria for different combination sets

Fig. 2. The Pearson correlation coefficient between the independent input variable and
thermal conductivity

4. Methodology

4.1. Artificial neural network (ANN)

Artificial neural networks are a way to approximate the functions
and predict the future state of different systems. The artificial neural
network structure is characterized by four traits, including the num-
ber of neurons in each layer, the type of transfer functions, the num-
ber of layers, and the training algorithm [112]. The smallest infor-
mation processing unit in an artificial neural network is the neuron,
which forms the artificial neural networks' core. Artificial neural

networks process observational data, discover the connection between
them, and transfer them into the network. Artificial neural networks are
made up of a number of nodes that are the same as the neurons and the
weights that connect the input neurons. The input data is multiplied by
their corresponding weights, and the sum of them is input to the neu-
rons. Each neuron has a transfer function. The input value is placed in
the transfer function, and the resulting value determines the neuron's
output. The transfer function can be linear or nonlinear. The most pop-
ular transfer functions are sigmoid, logistic, and hyperbolic functions
[112]. The function must be finite, incremental, continuous, and deriv-
ative and must be selected based on the modeling problem. Artificial
neural networks can be single-layer or multilayer. Multilayer perceptron
networks are known as MLP neural networks. In general, the mathemat-
ical form of the output signal of artificial neurons can be written as fol-
lows:

(7)

where is the input signal is the synaptic weight, , and respec-
tively are the total number of neurons in the input, hidden, and output
layers. The functions and are transfer functions for hidden and out-
put layers, respectively, and is the output of the neural network. Typ-
ically, the back propagation (BP) algorithm is used to train the artificial
neural network [113].

4.2. Hybridized Extended Kalman filter algorithm with Feed-Forward neural
network (EKF-ANN)

Kalman filter is one of the most famous and widely used mathemat-
ical tools, which is used for statistical estimates. The classic Kalman fil-
ter solves the problem of discrete linear filtering based on a recursive
method. This algorithm is implemented in two steps. In the prediction
step, the Kalman filter estimates the current state of the variables un-
der uncertainty. When the next measurement result is obtained, the pre-
vious estimate is updated with the weighted average. The algorithm is
recursive and is executed immediately using new inputs and previously
calculated scenarios [114].

If the relationships between the state and output variables are non-
linear, the extended Kalman filter (EKF) algorithm is used [115].
Feed-Forward neural network can be considered a nonlinear dynamic
system with synaptic weights [116]. Neural network training can be
equated with the problem of estimating the state of the nonlinear sys-
tem. For this reason, the extended version of the Kalman filter can be
used to estimate adjustable neural network parameters (weights and bi-
ases). As a result, the neural network must be formulated according to
state-space concepts (similar to what is called in nonlinear dynamic sys-
tems) to obtain the best value of the parameter developed by the Kalman
filter. Consider Fig.3 as a single-layered neural network used to identify
the primary system. This neural network can be defined as finite-dimen-
sional discrete-time systems with the following relations [117]:

(8)

(9)

Equation (8) is the process model in which the neural network
weight vector ( ) is ideally impregnated as a process state (
) as a system state. Equation (9) expresses the measurement model
to obtain the nonlinear neural network's response to the input vector (

) and its weights. The parameter is the measured noise and
is used as the activating function to describe the mod-

el's nonlinear part. Measurement noise is considered random with zero
mean and covariance, and process noise is considered with zero
mean and covariance [117].

The weight vector includes all the weights of the hidden layers and
the neural network's output and is defined as equation 10.

(10)
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Fig. 3. Structure of a single layer neural network with extended Kalman filter training algorithm

Here, a neural network with an activating intermediate layer is con-
sidered, in which , and are the number of input, intermediate,
and output signals, respectively. Thus, the total number of weights is

. The extended Kalman filter adjusts the neural net-
work weights to minimize the mean squares of the estimation error.
In summary, the weight adjustment process in the EKF method is per-
formed according to the following recursive relations [118]:

(11)

(12)

(13)

(14)

(15)

In these equations, the Kalman gain matrix, the estimation er-
ror, is observed data. The neural network output, the error covariance
matrix, is the output derivative matrix according to weights and

is the normalization matrix. The derivative matrix is a Ja-
cobin matrix of neural network outputs relative to its weights, which can
be calculated using the following equation [119]:

(16)

4.3. EKF-ANN implementation algorithm

The stages of the ANN-EKF algorithm can be summarized as follows:

Step 1: Obtain the output vector of the neural network in step k using
Eqs (8) and (9) ( )
Step 2: Obtain the output derivative matrix relative to the weights using
Eq (16) ( ).
Step 3: Calculate the estimation error vector using Eq (15) ( ).
Step 4: Calculate the Kalman filter gain with Eq (12) ( ).

Step 5: Obtain the error covariance matrix and adjust the weights for
step k+1 using Eq (13) and (14) ( and ).

The initial value of the weights is selected randomly with a
zero-mean value and a uniform or normal distribution. The initial error
covariance matrix can also be selected as:

(17)

Where I is the identity matrix and . the measurement
noise covariance matrix is considered as:

(18)

Where the learning rate and its value is in the range of
. The process noise covariance matrix is considered as:

(19)
Which is initially selected to be 0.1 and decreases overtime to

reach approximately . This decreasing trend of the coefficient
causes faster convergence, and its non-zero value prevents the diver-
gence of the error covariance matrix [120].

4.4. Genetic programming (GP)

The genetic programming paradigm is an evolutionary computa-
tional intelligence technique built on the foundation of the random bi-
ologically inspired algorithm, which is characterized by its reliance and
freedom in explaining complex processes using logical functions and
mathematical expressions. Usually, GP utilizes a tree structural repre-
sentation for decision features to create the solution in an expression
formation composed of elements like a tree and terminal nodes. In such
formalism, the tree node symbolizes function, and the terminal node
can represent an operand. In GP, numerical and categorical decision fea-
tures are labeled as a terminal set, while arithmetic symbols (-, +, ×,
÷), logical operators (e.g., if-then-else), and mathematical functions are
described as function set. A demonstration of GP methodology is high-
lighted in Fig. 4. The existing mathematic operations in Fig. 4 (upper
panel) are “*” and “-”and which represents the expression of “A-6C” for
tree structure on the left side of and “ ” on the right side, respec-
tively. The procedural operation of a GP is enumerated as follows:
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Fig. 4. The example of mutation (Upper panel) and crossover (Lower panel) procedure in
GP model

Step 1: a randomized system of trees is initialized, and the associated
objective functions of the individual trees are evaluated.
Step 2: The trees' objective function is compared and the optimal ob-
jective functions are selected by using the roulette wheel or tournament
methods.
Step 3: the set of operators known as the crossover and mutation oper-
ators are employed to reproduce the next set of trees.
Step 4: the recursive process of tree reproduction is continued until it is
maximal enough and the process is terminated. Otherwise, the iteration
begins again in step 2.

The crossover operator's role is to join two trees as a unit and subse-
quently use the unit to generate another two new unit sets. Upon gen-
erating a new unit, elemental change in the individual unit is produced
using the mutation operator. Fig. 4 highlights the application of the mu-
tation and crossover operator on one and two units, respectively.

4.5. Response surface methodology (RSM)

RSM is an aggregation of statistical approach and mathematical tech-
nique for obtaining simultaneous solutions of multivariate equations us-
ing data collected from a series of designed experimental observations.
It measures the connection between input factors (say three) and one or
more responses and determines the appropriate conditions for which the
input factors will yield an optimal response. A hypothesized mathemati-
cal model in RSM, usually a second-order polynomial. Equation (17) is
fitted to the data under the selected, designed observations.

(20)

Where Y is the predicted value of the target, is a constant, ,
and are linear, quadratic, and cross product terms, respectively

[121].

4.6. Evaluation indices of models

In order to evaluate the accuracy of the models and compare them
with each other, Correlation coefficient (R), Root mean square error
(RMSE), Relative absolute error (RAE), and Willmott's agreement Index
(IA) statistical criteria were used [122]. Besides efficient multi-objec-
tive criteria, Kling-Gupta efficiency (KGE) [123] was examined to spec-
ify the well-established approaches better. KGE is decomposed into the
correlation coefficient, variability (standard deviation), and the models'
mean magnitude.

(21)

(22)

(23)

(24)

(25)

where is observed value, is the predicted value, and
are the average values of observed and predicted data, and are
standard deviation values of observed and predicted data, and is the
number of data points. If the RMSE, MAE, and RAE are close to zero and
R, KGE and IA are close to unity; the model achieves better performance.

5. Model formulation

In this study, three robust data-driven models, including EKF-ANN,
GP, and RSM approaches, were developed to predict oil-based hybrid
nanofluids' thermal conductivity. All provided models were designed in
Matlab 2018b, and modeling was performed on an Intel, core i7 core
CPU Intel with frequency 3.2 GHz and 8 GB RAM computer. The EKF, as
the main novel predictive model, has two crucial parameters comprising
the neuron and epoch numbers achieved by a trial and error procedure.
Various attempts at performing the EKF-ANN model demonstrated that
the optimal neuron number and epoch value was obtained equal to 2
and 300, respectively. Also, the characteristics of GP based on the sim-
ple mathematical operators (i.e., +, -, , /, and ) were listed in Table
7. RSM, as one the most common data-driven models based on a qua-
dratic approximation, yields a reasonable estimation of various aspects
of nanofluids in computational heat transfer engineering applications.
The result of the RSM approach is reported in Table 8, which provides
the optimal relationship with quadratic approximation. The process of
the thermal conductivity of oil-based hybrid nanofluids modeling using
three adopted data-driven models is exhibited in Fig. 5.

Table 7
The GP method characteristics

Description of parameter Parameters specification

Function set +, −, ×, /,
Population size 400
Stop criteria Maximum number of iterations (200)
Maximum gene numbers 4
Selection tournament
Tournament size 8
Maximal tree depth 5
Mutation probability 0.15
Crossover probability 0.85
Crossover operators Subtree
Mutation operators Gaussian
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Table 8
the estimated Coefficients in RSM approaches using a quadratic approximation

inputs Estimate SE tStat pValue

(Intercept) -0.7561 0.1431 -5.2845 0.0000
x1 0.0538 0.0116 4.6451 0.0000
x2 -0.0001 0.0002 -0.6017 0.5478
x3 0.0080 0.0019 4.2823 0.0000
x4 0.0125 0.0097 1.2855 0.1997
x5 0.0588 0.0095 6.2233 0.0000
x6 0.0228 0.0068 3.3469 0.0009
x7 2.3999 0.5592 4.2919 0.0000
x1:x2 0.0005 0.0001 4.4922 0.0000
x1:x3 0.0004 0.0002 2.1695 0.0309
x1:x6 0.0100 0.0028 3.5985 0.0004
x1:x7 -0.3476 0.0642 -5.4138 0.0000
x2:x3 0.0000 0.0000 -2.2959 0.0224
x2:x5 0.0000 0.0000 2.2212 0.0271
x3:x7 -0.0727 0.0165 -4.3940 0.0000
x4:x7 -0.2820 0.1225 -2.3024 0.0220
x1^2 -0.0143 0.0025 -5.6525 0.0000
x4^2 0.0026 0.0010 2.6967 0.0074

6. Application results and discussion

As proven before, best subset regression analysis proved that the best
input combination is including solid volume fraction ( ), temperature (

), the thermal conductivity of the base fluid ( ), mean diameter (
and ), and bulk density ( and ) of nanoparticles. The provided

predictive models were performed several times to converge to stable
and reliable results. Table 9 demonstrated the “goodness of fit” mea-
sures for training, testing, and all datasets to the prediction of . The
results indicated that EKF-ANN in terms of (R=0.9728, RMSE=0.0071
W/m.K, KGE=0.961) in training and (R=0.9764, RMSE=0.0069 W/
m.K, KGE=0.9989) testing, respectively was identified as the superior
model in comparison with GP and RSM approaches for estimating the

. Besides, an accurate quantitative comparison on all datasets indi-
cated that the EKF-ANN on account of higher correlation coefficient
(R=0.9738,) and KPG (0.9630) as well as the lowest error metrics
(RMSE=0.0071 W/m.K, MAPE=2.4751%) was outperformed the RSM
(R=0.9671, KGE=0.9593, RMSE=0.0079 W/m.K, MAPE=2.9219%)
and GP (R=0.9465, KGE=0.9273, RMSE=0.0100 W/m.K,
MAPE=4.6257%). The RSM was standing on the second rank and had a
better performance versus the GP model.

As the graphical evaluation, Fig. 6 indicated the distribution den-
sity function (Left) and scatter plots (Right) of thermal conductivity
of oil-based nanofluids in the training and testing phase for all three
data-driven models. Fig. 6 (Left) indicated that EKF-ANN and RSM
have closer distribution to measured values than the GP model. How-
ever, it this crystal clear that RSM values showed fairly overfitting
in both training and testing modes. Further

Fig. 5. Road map of thermal conductivity of oil-based hybrid nanofluids
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Table 9
The statistical evaluation of all predictive models for training, testing, and all data sets.

Metrics EKF-ANN RSM GP

Train R 0.9728 0.9657 0.9430
RMSE 0.0071 0.0080 0.0103
MAPE 2.4947 2.9052 4.7063
RAE 0.1404 0.1629 0.2575
KGE 0.9610 0.9515 0.9194
IA 0.9861 0.9824 0.9700

Test R 0.9764 0.9720 0.9560
RMSE 0.0069 0.0077 0.0094
MAPE 2.4165 2.9722 4.3838
RAE 0.1337 0.1623 0.2396
KGE 0.9989 0.9703 0.9475
IA 0.9880 0.9855 0.9775

All R 0.9738 0.9671 0.9465
RMSE 0.0071 0.0079 0.0100
MAPE 2.4751 2.9219 4.6257
RAE 0.1386 0.1627 0.2529
KGE 0.9630 0.9593 0.9273
IA 0.9866 0.9833 0.9721

more, the scatter plots confirmed the superiority of the KFE-ANN model
compared to RSM and GP, regarding closer compliance and least dis-
persion relative to the X-Y line. The best predictive performance of
KFE-ANN and RSM occurred in the range of ( ) whereas
GP results exceed the error line at the plot's higher zones.

In the next validation of models, a comprehensive error analysis was
conducted based on a percentage of relative error (PRE %), standard-
ized residual error (ASRE), and frequency cumulative absolute percent-
age of relative error (RE) and absolute ASRE to more appraising the de-
veloped predictive schemes (Figs. 7 and 8). The left column of Fig. 6
depicted the PRE contours of the developed models versus and kBase
variations. Clearly can be seen that EKF-ANN ( ) and
RSM models ( ) by least range of PRE have better
performance in predicting the thermal conductivity of oil-based hybrid
nanofluids. Moreover, EKF-ANN and RSM models for the high value of
kBase and low value of maybe trapped on underestimation. Most un-
derstudy domains have acceptable PRE values (>5%) and yield to ap-
propriate results.

Fig.6 the violin plots of distribution function (Left) and scatter plot
(Right) of measured and predicted thermal conductivity of oil-based hy-
brid nanofluids

The right column of Fig. 7 illustrated the ASRE distribution. The
quantitative measurement evidenced that the EKF-ANN approach by the
range of ( , error band: 2.37) was ranked as the best
model and yielded the promising performance in simulating procedure.
In addition, GP and RSM models by a range of ( , er-
ror band: 2.44) and ( , error band: 2.74) can provide
acceptable results to predict oil-based hybrid nanofluids' thermal con-
ductivity. For efficient assessment of provided data-driven models, an
attractive error analysis was carried out, which illustrated the cumula-
tive frequency of percentage of ARE and ASRE for all datasets used in
modeling (Fig. 8). The left side of Fig. 8 (continuous lines) displayed
that in EKF-ANN, more than 90% of all datasets have the PRE% value
equal to or less than 4.97 %, whereas 90 % of all data in RSM and GP
was estimated with the PRE% value equal or less than 9.85% and 6.53%,
respectively. This comparison inferred that EKF-ANN outperformed the
GP and RSM models and RSM, despite the higher ASRE error band than
GP had better modeling performance .

To further validate and evaluate the efficiency of the developed pre-
dictive model, eight existing thermal conductivity correlation extracted
for oil-based hybrid nanofluid (i.e., Asadi et al.[54] and Soltani et
al. [68]), provided for water&EG based hybrid nanofluids (Toghraie
et al.[69], Harandi et al. [70], and Esfahani et al. [71]), and re-
ported for mono nanofluid, were examined using several statistical
criteria in Table 10. The comparison between the results

of Table 10 confirmed that the EKF-ANN model is superior to the
existing correlation in the estimation . Also, with respect to pre-
vious analyses, RSM and GP models as the second and third accu-
rate approach have been yielded promising outcomes compared to con-
sidered correlation. According to the spider plot of performance met-
ric in Fig. 9, Toghraie et al.[69] and Harandi et al. [70] 's equa-
tion in terms (R=0.8033, RMSE=0.0211 W/m.K, MAPE=9.1402%,
and KGE=0.5476) and (R=0.8025, RMSE=0.0211W/m.K,
MAPE=9.1673%, and KGE=0.5464), respectively led to more logical
results than other relationships.

To assess the accuracy of the proposed EKF-ANN model in pre-
dicting different hybrid nano-fluids' thermal conductivity, the obtained
values are compared with available measured data and some correla-
tion equations. Here, three hybrid nanofluids, including TiO2-SiC/Pure
diathermic/oil [29], WO3-MWCNTs/oil [124], and MgO-MWCNTs/En-
gine oil [55], are considered. For the first nanofluid, the variation of
predicted thermal conductivity versus temperature is plotted in Fig.
10a. According to the measured data, it is clear that the EKF-ANN can
predict the most accurate SiC/Pure diathermic/oil thermal conductiv-
ity values when compared with those of the developed data-driven ap-
proaches (i.e., the GP and RSM) and the correlation equation proposed
by Toghraie et al. [69] (Fig. 10a). The best results of the EKF-ANN
model are obtained in the range of to with relative error less
than .

For different values of volume fraction and temperature, the thermal
conductivity of Wo3-MWCNTs/oil nanofluid [124] compared to the ex-
perimental one is shown in Fig. 10b. For the high values of volume frac-
tion (say and ), the EKF-ANN model results have a perfect cor-
relation with the measured values in different temperatures with a rela-
tive error less than . The results associated with low volume fraction
values (say and ) have the maximum relative errors of
when compared with the measured data. These results indicate that the
EKF-ANN model can predict the thermal conductivity of Wo3-MWCNTs/
oil with acceptable accuracy under various conditions of volume frac-
tion and temperature.

The variation of MgO-MWCNTs/Engine oil thermal conductivity ver-
sus volume fraction (in the range of to ) at a constant temper-
ature of is shown in Fig. 10c. While the RSM model produces
the more accurate results for volume fraction above , the EKF-ANN
model and Asadi et al.[55] have the most accurate among the consid-
ered models and correlations for volume fractions below . Mean-
while, the maximum error observed in the EKF-ANN results is less than
of , which means that this model performed well in predicting the
thermal conductivity of MgO-MWCNTs/Engine oil [55] with different
volume fractions of nanoparticles. All of the results presented in Fig.
10 indicate that the proposed EKF-ANN model can predict nanofluids'
thermal conductivity under different working conditions with accept-
able accuracy. it is noteworthy that the relationship extracted from GP
(Eq (26)) and RSM (Eq (27)) performing by the accuracy of R=0.9465
and R=0.9671, respectively, are listed in Table 11.

7. Sensitivity analysis

In this section, a sensitivity analysis is performed to determine the
most sensitive parameters in the considered combination set in predict-
ing hybrid nanofluids' thermal conductivity. The correlation coefficient
and different errors and indices defined in the section are computed for
each variable in the combination set and compared in Table 12. Based
on the presented results, one can easily conclude that volume fraction
is identified as the most sensitive parameter. It has the lowest value of
the correlation coefficient (i.e., ) and the highest errors (i.e.,

W/m.K, ) among the considered parame-
ters. After the volume fraction of nanoparticles, the nanoparticle av-
erage diameter and density earn second and third place in the list of
the most sensitive variables. On the other hand, the temperature with

W/m.K, , and is known as the
least influential variable in predicting the hybrid nanofluid thermal con-
ductivity. Fig. 11 depicted the heat map of performance metrics for all
situations of sensitivity analysis.
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Fig. 6. the violin plots of distribution function (Left) and scatter plot (Right) of measured and predicted thermal conductivity of oil-based hybrid nanofluids

8. Outlier detection and applicability domain

Detection of outlier data and the domain of application is necessary
for developed machine learning models. The leveraged approach is one
of the most widely used and popular methods used in this field. In this
method, the leverage index (H) is calculated using the following matrix
[125][126]:

(28)

where is a matrix, where is the number of model variables,
and is the number of samples [125]. The diagonal elements of the

matrix are known as the or leverage index. The standard residual
(SR) is calculated from the following equation:

(29)

The standard residual ( ) is plotted against the to determine
outlier data and model applicability domain. The warning value of the
leverage index (

) is calculated using the following equation [127]:

(30)

The diagram versus is known as the Williams diagram. Sup-
pose most of the data are in the range of and . In that case, it indicates
the appropriate application of the model in the mentioned range and
therefore indicates the statistical validity of the developed model [127].

In the present study, to examine the outlier data and the application
domain, the Williams diagram was plotted for the three machine learn-
ing models. Fig. 11 shows the Williams diagram for the three EKF-ANN,
GP and SRM models. According to Fig. 12, all of the outputs of three ML
models are in the range of and , so they are statis-
tically valid. Their application in estimating oil-based hybrid nanofluid
thermal conductivity is highly reliable.

9. Conclusion and Remarks

In this study, a novel hybrid machine learning algorithm, extended
Kalman filter integrated with freed-forward neural network (EKF-ANN)
algorithm, is
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Fig. 7. The percentage of relative error contours (Left) and standardized residual error distribution (Right) for comparison of predictive performance data-driven models

Fig. 8. Cumulative frequency of percentage of ARE and ASRE for all developed predictive
models

used to provide an accurate prediction of oil-based nanofluids based
on volume fraction ( ), temperature ( ), the thermal conductivity of
the base fluid ( ), mean diameter ( and ) and bulk density
( and ) of nanoparticles as pre

dictor features. Besides, the GP and RSM model were adopted to better
validate of EKF-ANN approach. The outcomes of this research are pre-
sented as follows:

• An efficient feature selection, best subset regression analysis, was ex-
amined to achieve the best modeling results. The performed analy-
sis indicated that the best input combination in terms of Mallow,
Mameliya's prediction, and Akaike's information criteria included all
the input variables.

• The results demonstrated that the EKF-ANN approach showed the
most value of R=0.9738, KGE=0.9630, and IA=0.9866. The lowest
error metric RMSE=0.0071W/m.K and MAPE=2.4751%) is identi-
fied as the superior for estimation of thermal conductivity of oil-based
hybrid nanofluids. Moreover, the RSM approach in terms of
(R=0.9671, RMSE=0.0079 W/m.K, KGE=0.9593 and
MAPE=2.9219%) outperformed the GP model (R=0.9465,
RMSE=0.010 W/m.K, KGE=0.9273 and MAPE=4.6257%) and all
existing empirical correlations.

• Efficiency assessment of the model using the error analysis demon-
strated that the EKF-ANN approach by the minimum range

had the best predictive performance compared to
the GP and RSM models.
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Table 10
the comparison of the predictive data-driven models' performance with the existing empirical-based correlations

Metrics Pak and Cho [67] Mintsa et al.[72] Soltani et al.[68] Asadi et al.[54]
Toghraie et
al.[69]

Harandi et al.
[70] Esfahani et al.[71] EKF-ANN

R 0.7580 0.7138 0.7285 0.5555 0.8033 0.8025 0.7759 0.9738
RMSE 0.0243 0.0272 0.0282 0.0345 0.0211 0.0211 0.0238 0.0071
MAPE 10.5948 11.6215 12.9285 22.6308 9.1402 9.1673 10.6162 2.4751
RAE 0.6296 0.6942 0.7582 1.0429 0.5412 0.5429 0.6294 0.1386
KGE 0.4729 0.4013 0.4033 0.0371 0.5476 0.5464 0.4835 0.9630
IA 0.8291 0.7833 0.7762 0.5389 0.8776 0.8767 0.8351 0.9866

Fig. 9. The spider plot of metric performance for all existing correlation to predict the
thermal conductivity of nanofluids

• The volume fraction was identified as the most influential input pa-
rameter in the simulation of oil-based hybrid nanofluids thermal con-
ductivity.

• The leveraged approach demonstrated that all numbers of samples are
located in the applicability domain. Three proposed data-driven mod-
els (three EKF-ANN, GP, and RSM) statistically are at a high level of
reliability in estimating oil-based hybrid nanofluid thermal conductiv-
ity.
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Fig. 10. Variation of thermal conductivity of (a): Tio2-SiC/Pure diathermic oil [29] (b):
Wo3-MWCNTs/Oil [124] versus temperature (C) and (c) variation of thermal conduc-
tivity of MgO-MWCNTs/Engine oil [55] versus volume fraction (%) by using developed
data-driven approaches and the existing correlation equations.
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Table 11
The relationship extracted from the GP and RSM methods to estimate the thermal conduc-
tivity of oil-based hybrid nanofluids

Model Formula Equation

GP (26)
RSM (27)

Table 12
The outcome of sensitivity analysis using RSM model

Metrics All- All-T All-Dp All- All-kBase All

R 0.9066 0.9695 0.9682 0.9701 0.9691 0.9720
RMSE 0.0135 0.0079 0.0082 0.0079 0.0080 0.0077
MAPE 0.0086 0.0048 0.0049 0.0049 0.0051 0.0045
E 0.3119 0.1725 0.1783 0.1783 0.1835 0.1623
RAE 5.6307 3.2045 3.2487 3.3405 3.3793 2.9722
KGE 0.8212 0.9387 0.9343 0.9389 0.9370 0.9422
IA 0.9486 0.9845 0.9836 0.9846 0.9841 0.9855
Rank 1 5 2 3 4 -

Fig. 11. The statistical parameters for all sensitivity analysis situations were obtained by
the RSM model.

Fig. 12. Willliam's plot for measuring the applicability domain of EKF-ANN, GP, and SRM models
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