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Abstract

This thesis is broadly concerned with online-optimizing anti-windup control.

These are control structures that implement some online-optimization routines

to compensate for the windup effects in constrained control systems.

The first part of this thesis examines a general framework for analyzing robust

preservation in anti-windup control systems. This framework - the robust Kalman

conjecture - is defined for the robust Lur’e problem. This part of the thesis verifies

this conjecture for first-order plants perturbed by various norm-bounded unstruc-

tured uncertainties. Integral quadratic constraint theory is exploited to classify

the appropriate stability multipliers required for verification in these cases.

The remaining part of the thesis focusses on accelerated gradient methods.

In particular, tight complexity-certificates can be obtained for the Nesterov

gradient method, which makes it attractive for implementation of online-optimizing

anti-windup control. This part of the thesis presents a proposed algorithm that

extends the classical Nesterov gradient method by using available secant inform-

ation. Numerical results demonstrating the efficiency of the proposed algorithm

are analysed with the aid of performance profiles. As the objective function be-

comes more ill-conditioned, the proposed algorithm becomes significantly more

efficient than the classical Nesterov gradient method. The improved performance

bodes well for online-optimization anti-windup control since ill-conditioning is

common place in constrained control systems.

In addition, this thesis explores another subcategory of accelerated gradient

methods known as Barzilai-Borwein gradient methods. Here, two algorithms

that modify the Barzilai-Borwein gradient method are proposed. Global conver-

gence of the proposed algorithms for all convex functions are established by using

discrete Lyapunov theorems.
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Chapter 1

Introduction

Constraints are present in all control systems. Most often constraints are identified

as actuator magnitude and rate saturation, or output and state variable constraints.

Practical examples of these constraints include motor valve openings, engine nozzle

openings, torque/speed limitations of motors and flight control surface deflections. The

destabilizing effects of such constraints include performance deterioration, oscillatory

behaviour and even instability. The aforementioned destabilizing effects have been

cited as contributing factors in several mishaps involving high performance aircraft [1]

where pilot-induced oscillations were partly caused by rate saturation of control surfaces

inducing time-delay effects in the control loop.

The control "windup" effect occurs when the controller is not capable of instantly

responding to the changes in the control error. The control "windup" phenomena were

initially encountered by practical control engineers when designing PID controllers but

will also be present in any dynamical controller with relatively slow or unstable states as

pointed out in Doyle et al [2]. The control "windup" problem has also being attributed

to the Chernobyl disaster [54] where limits in the rate of change of the actuator pushing

the control rods into the core, aggravated an already dangerous situation. A standard

example of control windup is integrator windup. In this case, the mismatch between the

controller output and the plant input causes the integrator mode to continue integrating

the non-zero error and hence leads to accumulation of a significant error that would
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then require that the error has an opposite sign for a long period before the controller

action returns to normal. This behaviour results in large transients and in some cases the

closed-loop system may also become unstable or exhibit an oscillating behaviour. A sim-

ulation example is considered to illustrate the effect of integrator windup in degrading

system performance. Consider a unity-feedback interconnection of a discrete-integrator

process as shown in Figure 1.1,

✻-
♠ z−1Ts

1− z−1

yr ✲

PI Controller

1 + 0.5
z−1Ts

1− z−1
✲ ✲u û

✲

Figure 1.1: Feedback Control of a Simple Discrete-Integrator.

where Ts = 0.1 is the sampling time . The figure below, Figure 1.2, shows the unit-step

response when the PI-controller output is unconstrained, constrained to ±0.25V and
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Figure 1.2: Effect of Integrator Wind-up.
The saturation constraints cause a windup effect which leads to the observed overshoot. The

velocity-form PI (anti-windup) controller reduces the effect of this integral windup.

a velocity-form PI (anti-windup) controller is used. It can be observed from Figure 1.2

that the windup effect induces large transients in the output response and that this win-

dup effect is significantly reduced by using a velocity-form PI (anti-windup) controller.
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1.1 Research Objectives

Early ad-hoc efforts to address the windup effect include velocity-form [3], back-tracking [4]

and conditional integration [4] of the controller. Kothare et al [5] have put forward a uni-

fied coprime factor framework which includes all previous ad-hoc anti-windup schemes

as particular special cases. A few authors have attempted to analyze the stability prop-

erties of the resulting closed-loop behaviour of these anti-windup schemes using stability

tests (either via Lyapunov functions or Integral Quadratic Constraint theory) such as

the circle criterion, the Popov criterion and the use of Zames-Falb multipliers. Kothare

and Morari [6] gave an overview of the theory applied to anti-windup of MIMO systems.

The subject of this research is concerned about the growing trend of an anti-windup

paradigm known as the online-optimizing anti-windup scheme. These anti-windup

schemes are control structures that implement some online-optimization routines to

compensate for the windup effects. An important class of these online-optimizing anti-

windup schemes is the well-known model predictive control (MPC), and more import-

antly is the recent one introduced by [11]. This scheme [11] represent a class of one-step

prediction horizon MPC wherein the objective function is defined by the anti-windup

stability and performance requirements. More recently, the quadratic program used in

online-optimizing anti-windup schemes [8–12] has been shown to be sector bounded,

so that analysis tools similar to those for saturation can be applied [13], albeit with

a weaker set of available multipliers. The robust needs [14–16] of such anti-windup

schemes are however yet to be fully explored. The objective of this thesis is to create

a better understanding with regards to the robustness issues and the optimization cost

associated with the implementation of these online-optimizing anti-windup schemes.

1.2 Aims of Thesis

The aims of this thesis revolve on the two main areas that constitute online-optimizing

anti-windup control:
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• Analysis

The internal model control (IMC) anti-windup (IMCA) scheme is a special case of

notable anti-windup frameworks [5, 17, 18]). The IMCA scheme and many systems

of practical interest can be recast as a Lur’e structure. As noted in [14], the IMCA

scheme has guaranteed stability and "optimal robustness" property with respect to

the additive plant unstructured uncertainty. The integral quadratic constraint the-

ory has been exploited to extend the results of [14] to more general class of norm-

bounded uncertainty [15]. An important conclusion of [15] is that there need not

exist an anti-windup scheme that preserves the robustness of the linear controller.

This question of robust preservation of anti-windup control systems has facilitated the

investigation of a novel robust absolute stability conjecture. This conjecture, called

the robust Kalman conjecture, generalizes the question of robust preservation of anti-

windup control systems to include any system that can be recast as a Lur’e structure.

This thesis presents a verification of this conjecture for first-order SISO plants [19].

• Implementation

Online-optimizing anti-windup schemes [8–12] represent a class of one-step prediction

horizon MPC wherein the objective function is defined by the anti-windup stability and

performance requirements. Practical implementation of online-optimizing anti-windup

schemes requires numerical optimization algorithms that are not only fast but of low

complexity-per-iteration. Richter et al [20, 21] provided certification guarantees to

real-time model predictive control (MPC) applications based on projected fast gradient

methods [22,23]. This, in addition to the efficiency of the fast gradient methods, has mo-

tivated the need to develop secant-based variants of the fast gradient method. Though

the scope of this research is limited to unconstrained optimization, increased efficiency

of unconstrained gradient methods is a recipe for improved practical implementation of

large-scale optimization algorithms in MPC and related applications.
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1.3 Overview of Thesis

The thesis is organized into two parts - 1) Analysis: In particular, the analysis of robust

preservation in anti-windup control. 2) Optimization: Unconstrained minimization us-

ing accelerated gradient methods. The thesis consists of 9 chapters. Chapter 2 covers

the stability theory of nonlinear systems. The concept of stability, passivity theory and

the IQC theory are discussed in this chapter. Chapter 6 covers the theoretical tools

for analyzing optimization algorithms. Both Chapter 2 and Chapter 6 serve as math-

ematical tools useful for discussion of the contributions of this thesis. The remaining

chapters of the thesis are organized as follows:

1.3.1 Robustness Preservation in Anti-windup Control

Part I includes three chapters and focusses on analysis of saturated control systems.

Chapter 3 reviews the background literature and provide a perspective of the work

presented in Chapter 4. Chapter 4 addresses the question of "optimal robustness" [14,

24] of a saturated loop for first-order SISO plants.

Chapter 4:

In this chapter, a robust Kalman conjecture is defined for the robust Lur’e problem.

Specifically, it is conjectured that the nonlinearity’s slope interval for which robust

absolute stability is guaranteed corresponds to the robust interval of the uncertain

plant. It is shown that this robust Kalman conjecture is valid for first-order SISO

plants perturbed by various norm-bounded unstructured uncertainties (i.e. additive,

input-multiplicative and feedback uncertainty). The analysis classifies the appropriate

stability multipliers required for verification in these cases.

1.3.2 Accelerated gradient methods

Part II includes four chapters. Chapter 5 discusses introductory background on convex

optimization while Chapters 7 and 8 are focussed on developing efficient algorithms for
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convex functions.

Chapter 7:

In this chapter, a simple secant-based fast gradient method has been developed for

problems whose objective function is convex and well-defined. The proposed algorithm

extends the classical Nesterov gradient method by updating the estimate-sequence

parameter with secant information whenever possible. This is achieved by impos-

ing a secant condition on the choice of search point. Furthermore, the proposed al-

gorithm Secant-Based-NGM embodies an "update rule with reset" that parallels the

restart rule recently suggested in [25]. The proposed algorithm applies to a large class

of problems including logistic and least-square losses commonly found in the machine

learning literature. Numerical results demonstrating the efficiency of the proposed al-

gorithms are analyzed with the aid of performance profiles.

Chapter 8:

This chapter proposes two modified BB-gradient methods that are shown to be globally

convergent for all convex functions. The algorithm Scaled-BBGM is a gradient

method with a scaled Barzilai-Borwein step-size. The discrete Lyapunov theorem

has been used to establish that the proposed scaled-BB gradient method is globally

convergent. Furthermore, algorithm Hybrid-BBGM accelerates the scaled-BB gradi-

ent method by relaxing the monotonicity requirement of the discrete Lyapunov theorem.

The summary and recommendations for future research are made in chapter 9.

1.4 Contributions of Thesis

• The presentation in Chapter 4 provides a concise framework for investigating the

robust preservation problem in anti-windup systems. The result of [14] is a special

case of Result 1 while Results 2 and 3 in this chapter are entirely novel.

• The proposed algorithm (Secant-Based-NGM ) presented in Chapter 7 is novel.

The novelty of (Secant-Based-NGM ) centers on the proposed "update rule
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with reset" of the estimate-sequence parameter. Moreover, a theoretical justi-

fication is also given for the heuristic restart condition recently suggested in [25].

• The proposed algorithms (Scaled-BBGM, Hybrid-BBGM ) presented in

Chapter 8 are novel. The proposed algorithms are distinguished from other mod-

ified BB gradient methods in literature [26–35] by the fact that the proposed

algorithms neither require any inexact line-search nor any problem-dependent

parameter. In particular, the performance of Hybrid-BBGM is significantly

more efficient than the Globalized BB gradient method reported in [26, 29,35].

1.5 Publications

• “ A Robust Kalman Conjecture for First-Order Plants ”, in: Proceedings of 7th

IFAC Symposium on Robust Control Design, Aalborg, Denmark, June 2012.

Authors: Razak Alli-Oke, Joaquin Carrasco, William Heath, Alexander Lanzon.

• “ Two-stage multivariable IMC anti-windup (TMIA) control of a quadruple tank

process using a PLC ”, in: Proceedings of IEEE Multi-conference on Systems and

Control, Antibes, France, October 2014.
⋆

Authors: Awo King-Hans, William Heath, Razak Alli-Oke.
⋆
This material has not been included in this thesis.

• “ A secant-based Nesterov gradient method for convex functions ”, Optimization

Letters, 2014 (submitted).

Authors: Razak Alli-Oke, William Heath.
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Chapter 2

Stability Theory

This chapter is a basic review of stability concepts. The stability is an important concept

in the investigation and characterization of the behaviour of dynamic systems. Stability

plays a crucial role in systems theory and control engineering and has been investigated

extensively during the past century. The purpose of this chapter is to present some

basic definitions and results on stability that are useful for the design and analysis of

control systems. The two basic approaches to stability are

• The internal stability, which considers the stability of the state’s trajectories of

an autonomous system (i.e a system without inputs) x(t) = f(x(t)). Internal

stability refers to stability of the response to initial conditions only, assuming zero

inputs (i.e. free dynamics).

• The external stability, which is concerned with how much a system amplifies input

signals. External stability is also known as input-output stability and it refers to

stability of the response to the inputs only, assuming zero initial conditions (i.e.

forced dynamics). An example of such notions is the "bounded input - bounded

output" (BIBO) stability. The system is BIBO-stable if and only if any bounded

input signals will necessarily produce bounded output signals.

In general, stability theory attempts to analyze and classify the behaviour/solutions of

the underlying (partial) differential equations governing the considered system (without
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explicitly solving these equations). However, recent availability of efficient and flexible

software, such as MATLAB, has shifted the primal essence of (Lyapunov) stability

theory from descriptive theory of solutions to stability analysis and design of stabilizing

controllers [36, pg. 219]). Stability theory provides sufficient conditions to verify the

stability of a proposed controller for a given application.

Consider an illustrative example to highlight the importance of conducting a thorough

stability analysis of a given application, specifically an open-loop process whose dy-

namic is G(s) =
1

s2 + 4
. The output of this process is bounded for most sinusoidal

input signals; however, the output response becomes unbounded if the input signal is

a sinusoidal with a frequency equal to the system’s pole. This fact may not be imme-

diately obvious from simulation studies unless the stability of the process has properly

been analytically analyzed. Moreover, with stability analysis, one is able to provide

with certainty, some measure that characterizes the domain of stability. In addition,

stability analysis enables the quantification of admissible model-mismatch and unmod-

elled dynamics that the real system can tolerate.

In Section 2.1, vector spaces and operator theory are discussed. Section 2.2 presents

Lyapunov (internal) stability while Section 2.2 discusses input-output stability vis-a-vis

passivity and IQC theorems. In particular, the IQC theorem and the discrete Lya-

punov theorem discussed in this chapter are subsequently called upon in Chapter 4 and

Chapter 8 respectively.

2.1 Vector Spaces & Norms

A vector space V is a set that is closed under finite vector addition and scalar multi-

plication such that for all elements v1, v2, v3 ∈ V and any scalars r, s ∈ F(i.e. R,C), the

following axioms are satisfied [37].

1. v1 + v2 = v2 + v1 (commutativity of vector addition).

2. v1 + (v2 + v3) = (v1 + v2) + v3 (associativity of vector addition).
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3. s(v1 + v2)=sv1 + sv2 (distributivity of scalar multiplication over vector addition).

4. (r + s)v1=rv1 + sv1 (distributivity of scalar multiplication over field addition).

5. r(sv1) = s(rv1) (associativity of scalar multiplication).

6. 1(s) = s (Identity element of scalar multiplication).

7. For all v ∈ V , there exists an element −v ∈ V such that v + (−v) = 0.

8. There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .

Examples of vector spaces include:

• m dimensional Euclidean space - Fm.

• The space of all continuous functions defined on [0,∞]: f : Fm+ → Fm.

• Operators: e.g Matrices and transfer functions.

2.1.1 Banach Spaces

The norm [38] on V is a non-negative real-valued functional ‖.‖: V → R+ satisfying,

for all u, v ∈ V and for all a ∈ F:

1. ‖v‖=0 if and only if v=0.

2. ‖av‖=|a|‖v‖.

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (Triangle Inequality).

This norm induces a natural metric d(u, v)
△
= ‖u−v‖. A sequence vk in V is convergent

if the sequence of real numbers ‖vk − v∗‖ converges to zero where v∗ is the limit of the

sequence. A sequence vk is a Cauchy sequence if

∀ ǫ > 0 ∃ integer n : ‖vk − vl‖ < ǫ ∀ k, l ≥ n. (2.1)

If every Cauchy sequence in V is convergent (i.e. if every sequence which is trying to

converge actually does converge), then V is complete.

Banach Spaces: This is a normed vector space that is complete with respect to the
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induced metric.

Lebesgue Spaces Lp (S) [39]: This is the Banach space of all functions f : Rm
+ → Rm

defined on a measurable set S ∈ Rm
+ for which the pth power of the norm is integrable

(p = 1, 2....∞) i.e. have finite norms ‖f‖p:

‖f‖p =
(∫

S

|f |p dt
) 1

p

, (2.2)

‖f‖∞ = lim
p→∞

‖f‖p = ess sup
t∈Rm(+)

|f(t)|∞. (2.3)

2.1.2 Hilbert Spaces

Inner Product Spaces [38]: A vector space with an inner product bilinear mapping 〈., .〉

from vector space V × V onto F such that for all u, v, w ∈ V and for all a, b ∈ F:

1. 〈v, v〉 is real and 〈v, v〉 ≥ 0.

2. 〈v, v〉 = 0 if and only if v = 0.

3. Linearity: 〈u, av + bw〉 = a〈u, v〉 + b〈u,w〉.

The inner product induces a natural norm ‖v‖ =
√
〈v, v〉.

Hilbert Spaces: This is an inner product space that is complete with respect to the

metric induced by its natural norm.

Square-Integrable Lebesgue Spaces L2 (S): This is the Hilbert space of all functions

f : Rm
+ → Rm defined on a measurable set S ∈ Rm

+ for which the norm is square

integrable and with

〈u, v〉L2

△
=

∫

S

〈u(t), v(t)〉. (2.4)

2.1.3 Operator Spaces

Operator Spaces: An operator H is a mapping from one normed (Banach) space to

another. Consider the case when both spaces are the same i.e H : Lp → Lp and then
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H ∈ Lp operator space1. Consequently, ‖H‖Lp
denotes the induced Lp norm of an

operator H and defined by:

‖H‖Lp
= sup

v∈Lp

v 6=0

‖H(v)‖
‖v‖ . (2.5)

An operator H is linear if it satisfies

H(αf + βg) = αH(f) + βH(f). (2.6)

An example of such linear operator is the transfer function G(s) which is defined on the

complex plane s=σ + jω for σ, ω ∈ R. For a transfer function G(s), the ‖G‖∞ gives a

measure of worst-system gain over all frequencies and defined by

‖G‖∞ = ‖G‖L2 = sup
ω∈R

|G(jω)|. (2.7)

Also, the ‖G‖2 is a measure of average-system gain over all frequencies and is defined by

‖G‖22 =
∫ ∞

−∞

Trace [g(t)∗g(t)] dt =
1

2π

∫ ∞

−∞

Trace [G(jω) ∗G(jω)] dω, (2.8)

where g(t) and G(jω) represents the corresponding (matrix-valued) impulse response

and Fourier transform of G(s) respectively.

The Hardy space Hp is a subspace of Lp (p=1, 2, ...∞) for which G(s) is bounded and

analytic in the closed right half s-plane.

Lemma 2.1 ( [40]). The ‖G‖2 is finite if and only if G(s) is strictly proper and has no

poles on the imaginary axis; the ‖G‖∞ is finite if and only if G(s) is proper and has no

poles on the imaginary axis (see [40] for proof).

Thus by Lemma 2.1, H∞ corresponds to the space of (time invariant) proper Hurwitz-

stable transfer function matrices and H2 corresponds to the space of (time invariant)

1Operators are defined similarly for general vector-spaces V,W.
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strictly proper Hurwitz-stable transfer function matrices. The subspace of real rational

transfer function matrices in Hp and Lp are called RHp and RLp respectively.

2.1.4 Extended Spaces

This is an extension of a normed vector space which may not be bounded in the norm

of their vector spaces but where any truncation to a finite time intervals is bounded.

Let f : R→ V , then

fT (t) :





f(t), t ≤ T ∈ R,

0, t ≥ T.

(2.9)

Definition 2.1 ( [41]). The extended space Le is defined as

Le = f : R→ V : ‖fT ‖ <∞, ∀T > 0.

where ‖.‖ is the norm on L. It is assumed that the norm ‖.‖ is such that

• For every f ∈ Le, we have ‖fT1‖ ≤ ‖fT2‖ for all T1 ≤ T2 i.e ‖fT ‖ is monotonically

non-decreasing.

• For every f ∈ L, we have ‖fT ‖ → ‖f‖ as T →∞.

The above conditions hold for Lpe(0,∞) spaces, p = 1, 2, · · ·∞.

2.2 Lyapunov Stability Theory

Some of the fundamental concepts of internal stability were introduced by the Russian

mathematician and engineer Alexandr Lyapunov in [42]. The Lyapunov stability theory

essentially formalizes the idea that if the total energy is dissipated, then the system must

be stable. Consider the autonomous (or time-invariant) system

ẋ = f(x, u), (2.10)
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where x(u) ∈ X(U) ⊂ Rn(m) and f : D → Rn are state(input) vector variables and a

locally Lipschitz2 map from domain D ⊂ Rn into Rn respectively.

The free dynamics of (2.10) possess an equilibrium point at the origin3 (x̄ = 0) that is:

1. (Lyapunov) stable if, for each ǫ > 0, ∃ δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ǫ ∀ t ≥ 0.

2. Asymptotically stable if it is stable and ∃ δ such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0.

3. Exponentially stable if ∃ some constants ρ1, ρ2 ≥ 0 such that

‖x(t)‖ ≤ ρ1‖x(0)‖e−ρ2t ∀ t ≥ 0.

The domain of attraction is the set of initial points x0 such that the solution of (2.10) is

asymptotically or exponentially stable. The origin is globally lyapunov/asymptotically/

exponentially stable if the domain of boundedness/attraction is the entire

state-space X = Rn.

Theorem 2.1 (Discrete Lyapunov Stability Theorem [43,44]). Let x∗ = 0 be the equilib-

rium point of the autonomous system xk+1 = F (xk). Assume that F is locally Lipschitz

and let V : Rn → R be a scalar-valued continuous differentiable function defined on Rn.

Define ∆V(xk) := V(xk+1)−V(xk). Suppose there exists V such that

(i) V(0) = 0,

(ii) V(xk) > 0 for all xk 6= 0 in Rn,

(iii) V(x)→∞ as ‖x‖ → ∞,

then the equilibrium point x∗ = 0 is

• globally stable if ∆V(xk) ≤ 0 for all xk in Rn.

• globally asymptotically stable if ∆V(xk) < 0 for all xk 6= 0 in Rn. �

2This assumption ensures that (2.10) has unique solutions in the neighbourhood of the local
point/initial condition.

3There is no loss of generality since any equilibrium point can be shifted to the origin via change of
variables.
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Furthermore [45], if there exists constants c1 > 0 and c2 > 0 such that for all xk in Rn,

1. c1‖xk‖22 < V(xk) < c2‖xk‖22,

2. ∆V(xk) < −c3‖xk‖22,

then the autonomous system xk+1 = F (xk) is globally exponentially stable with respect

to the 2-norm.

Theorem 2.2 (Continuous Lyapunov Stability Theorem [46]). Let ẋ = F (x), F (0) = 0

where x ∈ X ⊂ R
n and X contains the origin. Assume that F is locally Lipschitz and

V : X → R is a continuous differentiable (C1) function. If

1. V(0) = 0,

2. V(x) > 0 for all x 6= 0,

3. V̇(x) < 0 for all x 6= 0,

then x = 0 is locally asymptotically stable. If further

4. V̇(x)→∞ as ‖x‖ → ∞,

then x = 0 is globally asymptotically stable.

The Lyapunov function can also be considered as a storage function in the context

of dissipative theory.

Definition 2.2 (Dissipation Inequality [47]). Consider the following system

H :





ẋ = f(x, u),

y = h(x, u),

(2.11)

where x(u)(y) ∈ X(U)(Y ) ⊂ Rl(n)(m). The dissipation inequality states that the increase

in its energy (non-negative real storage function) during the interval (t0, t1) cannot ex-

ceed the energy supplied (via integral of the supply rate) to it.

S(x(t1))− S(x(t0)) ≤
∫ t0

t1

s(u(t), y(t))dt, (2.12)
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for all t0 ≤ t1; and all trajectories that satisfy the dynamical equations (2.11).

The Lyapunov function V(x) is a special case of the storage function S(x) in the

dissipation inequality, if S(x) is a continuously differentiable (C1) function and the

input is absent (u = 0 =⇒ s = 0).

2.3 Input-Output (IO) Stability Theory

Input-output relation specifies the output in terms of the input. It does not require

the internal dynamics to be specified and thus allows consideration of rather general

distributed parameter, large scale and nonlinear systems. This section briefly discusses

the IQC theorem and passivity theorems, which give the stability conditions in the

input-output sense. The input-output relationship is often more conveniently represen-

ted by system operators. A system operator represents a mapping from Lnpe into Lmpe;

given an input u(t), then the output is given by y(t) i.e.

H : u(t) ∈ Lnpe → y(t) ∈ Lmpe ∀t > 0.

2.3.1 Causal Systems

An operator is causal if the value of the output signal at time t depends only on the

values of the input up to time t i.e for t ∈ [0, T ], the values of Hu(t) depends only on

the values of u(t) over [0, T ].

Definition 2.3 ( [41]). A mapping H : u(t) ∈ Lnpe → y(t) ∈ Lmpe is said to be causal if

(Hu(t))T = (HuT (t))T ∀u(t)T > 0 ∀u ∈ Lnpe.

It is noncausal if Hu(t) depends on the future (in addition to possible dependence

on past or current) values of the input signal u(t). It is anticausal if Hu(t) depends

only on the future values.
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2.3.2 L-Stability

Definition 2.4 ( [48]). A mapping H : Lnpe → Lmpe is Lpe stable if there exists a class

K function α, defined on [0,∞) and a nonnegative constant β such that

‖(Hu)τ‖Lp
≤ α(‖uτ‖Lp

) + β, (2.13)

for all u ∈ Lnpe and τ ∈ [0,∞). It is finite-gain Lpe stable if there exist nonnegative

constants λ and β such that

‖(Hu)τ‖Lp
≤ λ‖uτ‖Lp

+ β, (2.14)

for all u ∈ Lnpe and τ ∈ [0,∞) The definition of L∞ corresponds to the familiar concept

of bounded-input-bounded-output stability.

Definition 2.5 ( [46]). The positive feedback interconnection of H1 and H2 given by





u2 = H1(u1) + r2,

u1 = H2(u2) + r1,

(2.15)

is well-posed (see Fig. 2.1) if the map (u1, u2)→ (r1, r2) defined by (2.15) has a casual

inverse on Ln+m
pe [0,∞). The feedback system is said to be stable if it is well-posed and

if for any r1, r2 ∈ Ln(m)
pe [0,∞), then u1, u2 ∈ Ln(m)

pe [0,∞). If in addition, the inverse is

bounded i.e there exists a constant λ > 0 such that

∫ T

0
(|u1|2 + |u2|2)dt ≤ λ

∫ T

0
(|r1|2 + |r2|2)dt, for any T ≥ 0,

then the finite-gain Lp (p = 1, 2....∞) stable.

Remark 2.1. In this thesis, it is assumed that the signal spaces belong to L2e (⊂

Hilbert space H) in order to exploit its additional inner product structure. Furthermore,

we would restrict our discussion to square transfer-functions i.e. u, H(u) ∈ Lm2e.
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2.3.3 Passivity Theory

A system operator with input-output pair (u, y) is said to be passive [49] if there exists

a nonnegative constant β ≥ 0 such that:4

−β ≤
∫ T

0
uT (t)y(t) ∀ u(y) ∈ Lm2e, ∀ T ≥ 0. (2.16)

2.3.3.1 Positive Real Systems

A commonly encountered input-output property of passive systems e.g electrical net-

works is positive realness. A system operator with input-output pair (u, y) is said to

be positive real [49] if for all t1 ≥ t0 ≥ 0, u(y) ∈ Lm2e,

∫ t1

t0

yT (t)u(t)dt ≥ 0, whenever x(t0) = 0.

An LTI system operator is (strictly) passive if and only if its transfer function mat-

rix G(s) is (strictly) positive real [see [48] for proof]. The positive realness property of

G(s) can also be defined in the frequency-domain as follows:

Definition 2.6 ( [48]). A real rational proper transfer function matrix G(s) of the

complex variable s = σ + jω is called Positive Real if

1. all poles of all the elements of G(s) are in Re(s) ≤ 0 ie G(s) is analytic in the

open RHP (Re(s) > 0).

2. any pure imaginary pole jω of any elements of G(s) is simple and such that

the associated residue matrix lim
s→jω

(s− jω)G(s) is positive semidefinite Hermitian

(Stability in the Limit).

3. The matrix G(jω)+G∗(jω) ≥ 0 for all real value ω for which s = jω is not a pole

of any element of G(s).

4In the state-space approach, this is equivalent to the system being dissipative with respect to supply
rate uT (t)y(t) with the storage function S(x(t1))=0 and S(0)=β.
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Definition 2.7 ( [48]). Assume that det[G(s) +GT (−s)] is not identically zero for all

s. Then G(s) is Strictly Positive Real (SPR) i.e G(s− ǫ) is PR for some ǫ > 0 if

1. G(s) is Hurwitz; poles of all elements of G(s) are in Re(s) < 0 ie G(s) is analytic

in the closed RHP (Re[s] ≥ 0).

2. The matrix G(jω) +G∗(jω) > 0, ∀ω ∈ R.

3. G(∞)+G∗(∞) is positive definite OR it is positive semidefinite and having (p−q)

singular values with lim
ω→∞

σi(ω) = 0+, i.e

lim
ω→∞

ω2MT [G(jω) +GT (−jω)]M is positive definite

for any p× (p− q) full-rank matrix M such that

MT [G(∞) +GT (∞)]M = 0,

where q is the rank of [G(∞)+GT (∞)]. If [G(∞)+GT (∞)] = 0 (i.e lim
ω→∞

σi(ω) =

0 ∀i = 1...p), we can take M = I.5

2.3.3.2 Passivity Theorems

There are many theorems and lemmas relating to passivity. Here, we state a well-known

formulation of the passivity theorem.

♥ ✲

✻
+

✛ ♥
❄

−

+✛

✲ y1

y2 r2

r1

+

u1

u2

H1

H2

Figure 2.1: Negative Feedback System.

5In the scalar case(p = 1), these conditions reduces to G(s) being Hurwitz, Re(G(jω)) > 0 ∀ω ∈ R

and either G(∞) > 0 or G(∞) = 0 & lim
ω→∞

ω2Re[G(jω)] > 0.
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Theorem 2.3 (Passivity Theorem [50]). Consider the well-posed system shown in

Fig. 2.1 satisfying the dynamical equations (2.15) with H1, H2 : Lm2e → Lm2e. Suppose

there exists real constants ǫi, δi such that:

〈x,Hix〉 ≥ ǫi‖x‖2T1
+ δi‖Hix‖2T2

∀Ti ≥ 0, ∀x ∈ Lm2e, i = 1, 2. (2.17)

Then the system is L2-stable without bias if ǫ1 + δ2 > 0, ǫ2 + δ1 > 0.

2.3.4 Integral Quadratic Constraints (IQC) Theory

The unifying framework of integral quadratic constraints (IQC) gives useful input-output

characterizations of the structure of an operator on an Hilbert space. Consider the

well-posed system shown in Fig. 2.2 satisfying the dynamical equations (2.15)

with H1, H2 : Lm2e → Lm2e.

♥ ✲

✻
+

✛ ♥
❄+✛

✲ y1

y2 r2

r1

+

u1

u2

+
H1

H2

Figure 2.2: Positive Feedback System.

It has been shown in [51] that the internal signals of a feedback interconnection of

two stable casual operators of H1 and H2 are unique and bounded under external dis-

turbances if and only if the graph6 of inverse H1 (i.e. GIH1
) and the graph of H2 (i.e. GH2)

intersect only at the origin i.e. GIH1
and GH2 are disjoint and topologically separated.

It is also shown in [51], that a sufficient condition for topological separation is if for

every τ ∈ [0∞) there exists a separating functional: dτ : L2e → R and ǫ > 0 such that

S1 : dτ (u y) < −ǫ(‖u‖2 + ‖y‖2), ∀(u y) ∈ GH1 . (2.18)

S2 : dτ (u y) ≥ 0, ∀(u y) ∈ GIH2
. (2.19)

6The graph of an operator is input-output signal pair of the operator.

39



In the passivity framework, this separating functional is the quadratic form uT y. The

use of cones (conic sectors) which are described by quadratic forms seems to be the

simplest alternative means of describing S1 and S2 within spaces containing their oper-

ator’s graph whilst ensuring topological separation and these conic descriptions has led

to the integral quadratic constraint theory.

Remark 2.2. Consider S2 described by a cone defined by



y

u




∗(
Π

)


y

u


 ≥ 0. Then

a sufficient condition for L2e stability is that GH1 ∈ S1:

u∗



H1

Il




∗(
Π

)


H1

Il


u < −ǫ u∗(Il)u.

In a more elegant fashion, the IQC theorem was stated in [46] with H1 defined

by a stable causal LTI operator Gp(s) and H2 defined by a stable causal (possibly

time-varying nonlinear) operator ∆.

Definition 2.8 ( [46]). A operator ∆̃, with input-output pair (u, y) ∈ Lm2 [0,∞), is said

to satisfy the IQC defined by a measurable bounded Hermitian-valued Π : jR→ C(2m)×(2m),

if for all y ∈ Lm2 [0,∞) then

∫ ∞

−∞



ŷ(jω)

û(jω)




∗

Π(jω)



ŷ(jω)

û(jω)


 dω ≥ 0, (2.20)

where ẑ and ŵ are the Fourier transform of the signals y and u respectively.

Theorem 2.4 (IQC Theorem [46]). Let H1 = Gp(s) ∈ RH∞ and H2 = ∆̃ be a bounded

casual operator. Assume that:

1. The interconnection between Gp(s) and τ∆̃ is well posed for any fixed τ ∈ [0, 1].

2. There exists a measurable Hermitian-valued Π such that the operator τ∆̃ satisfies

the IQC defined by Π for all τ ∈ [0, 1].
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3. There exists ǫ > 0 such that



Gp(jω)

I




∗

Π(jω)



Gp(jω)

I


 ≤ −ǫI, ∀ω ∈ R. (2.21)

Then, the feedback interconnection of Gp(s) and ∆̃ is L2-stable.

Remark 2.3. If Π is congruent to
(
Im 0
0 −Il

)
(which is the case in many applications),

then τ∆̃ satisfies the IQC defined by Π for all τ ∈ [0, 1] if and only if ∆̃ does so. This

simplifies Assumption 2).

Unlike the passivity theory, implicit incorporation of linear transformations/multipliers

and the ease in combining nonlinearities/uncertainties that satisfies conic sector restric-

tions makes IQC framework attractive for stability analysis of nonlinear systems. The

following well-known lemma is also useful in the treatment of the subject matter dis-

cussed in this thesis.

Lemma 2.2 (Schur Complement Lemma [52]). Given P ∈ Fn×m, S ∈ Fn×m and

S ∈ Fn×m. Then,



P S

S∗ Q


 > 0 ⇐⇒





(i) Q > 0 and P − SQ−1S∗ > 0

(ii) P > 0 and Q− S∗P−1S > 0.

(2.22)

2.4 Summary

In this chapter, the concept of stability has been discussed. The stability of a (feedback)

system has been analyzed either from the perspective of internal stability (i.e. Lyapunov

theory) and its input-output properties (i.e. passivity and IQC theory). In particular,

the discrete Lyapunov theorem, the IQC theorem and the Schur Complement Lemma

discussed in this chapter are key mathematical tools required for the contributions

presented in Chapter 4 and Chapter 8 respectively.
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Chapter 3

Introductory Background on

Anti-Windup Control

This chapter provides background information on anti-windup control and justifies the

use of the Lur’e structure as a basis of the proposed general framework for addressing

the issue of robust preservation in anti-windup schemes.

All practical systems are inherently nonlinear. Most commonly, the nonlinearity is

as a result of saturation constraints and switching modes. Examples include constraints

on valve openings, throttle openings, flight control surface deflection, safety limits,

engine-nozzle openings, fuel flows in aerospace systems and boiler regulators. Saturation

constraints are ubiquitous and critical for practical applications, hence considerable

research activity has been focused on constrained control systems design.

Saturation constraints cause a mismatch between the controller input and the con-

troller output. Thus, the saturated controller output is unaware of the controller input

and therefore makes the feedback loop to run as open loop [53]. As a result, the con-

troller output "winds up". The presence of slow or unstable dynamics (e.g. integrators)

will also cause the controller output to "windup" and hence require that the error has

opposite sign for a long period before the feedback loop is active. As a result a signi-

ficant transient/overshoot must decay before the system returns to the linear regime.

This behaviour results in degradation of controller performance. The aforementioned
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destabilizing effects have been cited as contributing factors in several mishaps involving

high performance aircraft [1] where pilot-induced oscillations were partly caused by rate

saturation of control surfaces inducing time-delay effects in the control loop. It has also

being attributed to the Chernobyl disaster [54] where limits in the rate of change of

the actuator pushing the control rods into the core, aggravated an already dangerous

situation. See Chapter 1 for simulation responses of a simple illustrative example.

3.1 Anti-Windup Control

There are two approaches in design of control systems subject to saturation constraints.

1. The a priori design approach is a one-step approach in which a (possibly nonlinear)

control design satisfies all nominal performance specifications whilst implicitly

satisfying such saturation constraints . Typical examples include model predictive

controllers (MPC) [55] and nonlinear output feedback dynamic compensators [56,

57].

2. The a posteriori design strategy is a two-step approach in which a linear control

design satisfying all nominal performance specifications is performed first, then

an additional (anti-windup) compensator to the linear controller is designed to

minimize the undesirable effects of anti-windup which can occur during satura-

tion [58].

3.1.1 Anti-Windup Compensators

The design requirements of an anti-windup compensator as formalized in [59–61] include

• Closed-loop system stability

• Linear Performance Recovery: Recovery of the linear performance in the absence

of saturation.

• Graceful Performance Degradation: Smooth degradation of the linear performance

in the presence of saturation.
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The "controller windup" phenomenon was conceived as the inconsistency between the

internal states of the controller and the saturated controller output û [53,62,63]. Many

different schemes have appeared in the literature since the anti-windup methodology

of Fertik and Ross [64]. Using the difference between the saturated û and unsaturated

controller output u, the generic anti-windup framework [18] (see Fig. 3.1) seeks to restore

the consistency between the saturated controller output û and the controller’s internal

states. This is achieved by conditioning the linear controller with two signals



ζ1

ζ2


 =



Λ1(s)

Λ2(s)


 (û− u), affecting the controller output and the controller states respectively.

✛

✲❧✲
-

u y

❄ ❄❢✛

✻
✻

✲

✻

✲w û

-

❢✲

❄

❧✲ ✲

d
❄+

G(s)K(s)

ζ1
ζ2

Λ1(s)

Λ2(s)

+

Figure 3.1: Generic Anti-Windup Framework.

A direct equivalence between generic anti-windup framework ( Fig. 3.1 ) and classical

feedback structure with anti-windup ( Fig. 3.2 ) can be found in [9]. In particular,

✲ ♠ ✲✲ ✲

❄✛

✻- -
✲♠ G(s)

K2(s)

K1(s)
yu ûr

Figure 3.2: Classical Feedback Structure with Anti-Windup.
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Kothare et. al. [5] considered the case when



Λ1(s)

Λ2(s)


 are constant matrix parameters.

In this case, K1(s) = U(s) and K2(s) = I − V (s) where U(s), V (s) is a left coprime

factorization of the controller K(s) given by

[V (s) U(s)] =
[ A−H1C −H1 B −H1D

H2C H2 H2D

]
, (3.1)

and

H1 = Λ1(1 + Λ2)
−1, (3.2)

H2 = (1 + Λ2)
−1. (3.3)

If H1 is chosen so that A − H1C is stable, then U(s), V (s) is a stable left coprime

factorization of the controller K(s). It was also shown in [5] that with proper selection

of



Λ1(s)

Λ2(s)


 as constant matrix parameters, the generic framework in Fig. 3.1 (and

therefore Fig. 3.2) unifies a large class of existing anti-windup control schemes.

The analysis and synthesis for the generic framework (Fig. 3.1) was extended in [18]

to the more general case where



Λ1(s)

Λ2(s)


 are dynamic transfer functions. Here, the

authors showed that for stable plants, there always exists an anti-windup compensator

of order greater than or equal to that of the plant which, in addition, satisfies an L2
performance objective.

However, in most engineering problems, it is preferable to inject the compensation

signals directly into the controller input and controller output respectively. To this end,

an alternative framework called external anti-windup framework was introduced in [17],

where the conditioning signal



Θ1(s)

Θ2(s)


 (û−u) enters the controller input and controller
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output respectively. It is instructive to note that with the transformation,



Λ1(s)

Λ2(s)


 =



B 0

D I






Θ1(s)

Θ2(s)


 , (3.4)

the external anti-windup framework is equivalent to the generic framework (Fig. 3.1).

Nevertheless, it is also easy to show the direct equivalence of the external anti-windup

framework to classical feedback structure with anti-windup (Fig. 3.2). Furthermore,

the classical feedback structure with anti-windup Fig. 3.2 can subsequently be recast as

a Lur’e structure (Fig. 3.3),

✲♥ ✲

✻

ϕ

-

u

y

P (s)

✛ ♥
❄+
✛f

Figure 3.3: The Lur’e Structure.

where ϕ represents the saturation nonlinearity and P (s) = K1(s)G(s) +K2(s).

3.1.2 Robust-Preserving Anti-windup

The robustness of the classical anti-reset anti-windup has been examined in [72]. The

external anti-windup framework [17] has also been extensively studied (e.g. [65–69]) and

robustness considered in [14, 15, 24, 70, 71]. An anti-windup scheme that preserves the

robustness of the unconstrained closed-loop system is said to be "optimally robust" [24].

The IMC anti-windup was reported in [14] to be "optimally robust" with respect to the

additive plant unstructured uncertainty. Furthermore, an important conclusion of [15]

is that there need not exist an anti-windup scheme that preserves the robustness of the

linear controller. In general, we are interested in knowing if a proposed anti-windup

scheme is "optimally robust". If indeed "optimal robustness" holds, then the designer

can easily estimate the amount of uncertainty a given anti-windup scheme can tolerate
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by simply analyzing the linear counterpart.

3.2 Summary

This chapter has discussed some anti-windup frameworks available in the literature

and has shown that the presented anti-windup schemes could be transformed into an

equivalent Lur’e structure. In chapter 4, a fairly general and abstract framework (based

on the Lur’e structure) is presented to study the issue of this robust preservation for

first-order SISO plants.
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Chapter 4

A Robust Kalman Conjecture

4.1 Introduction

This chapter presents a robust absolute stability conjecture that serves as a fairly general

framework to study the issue of robust preservation in anti-windup systems. It has

previously been noted in Chapter 3 that most anti-windup systems can be represented

as a Lur’e structure (see Fig. 4.1).

✲♥ ✲

✻

ϕ

-

u

y

G(s)

✛ ♥
❄+
✛f

Figure 4.1: The Lur’e Structure.

Absolute stability theory studies the stability of the well-posed Lur’e structure for

all nonlinearities ϕ from a given class of nonlinearities Φ. Determining the conditions

for which the Lur’e structure loses its absolute stability has long attracted the interests

of researchers since it was posed by Lur’e and Postnikov in 1944. The Lur’e problem

represents a particular case of general nonlinear systems wherein the nonlinearity is

separable and this includes feedback linear systems with saturation constraints.

An operator ϕ : Le → Le is static if ∃N : R → R such that (ϕy)(t) = N(y(t)) and
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it is monotone non-decreasing if

[N(y2)−N(y1)][y2 − y1] ≥ 0 ∀ y1, y2 ∈ R.

Typically, conic conditions are used to further describe the families of nonlinearities.

Given α, β ∈ R, a nonlinear operator is classified as follows:

• Sector-Bounded i.e. SB [α, β]:

αy21 ≤ y1 N(y1) ≤ βy21.

• Slope-Restricted i.e. SR [α, β]:

α(y2 − y1)
2 ≤ [N(y2)−N(y1)][y2 − y1] ≤ β(y2 − y1)

2.

Without loss of generality any SB [α, β] or SR [α, β] can be mapped to SB [0, k] or

SR [0, k] respectively by loop transformations [7]. Two absolute stability conjectures

have been proposed to answer the Lur’e problem. These two conjectures are stated as :

1. Aizerman Conjecture [73]: The feedback interconnection between a linear

plant G(s) with any sector-bounded SB [α, β] nonlinearity ϕk is stable if the feed-

back interconnection between G(s) and any constant gain K ∈ [α, β] is stable.

2. Kalman Conjecture [73]: The feedback interconnection between a linear plant

G(s) with slope-restricted SR [α, β] nonlinearity ϕk is stable if the feedback inter-

connection between G(s) and any constant gain K ∈ [α, β] is stable.

♥ ✲

✻

K

-

u

y

G(s)

✛ ♥
❄+
✛f

✲

(a)

♥ ✲

✻

ϕk

-

u

y

G(s)

✛ ♥
❄+ f

✲

✛

(b)

If the system in Fig. 4.2(a) is stable, then system in Fig. 4.2(b) is stable.

Figure 4.2: The Absolute Stability Conjecture.

Even though these conjectures have been shown to be false in general, they have played

a vital role in rigorous development of modern absolute stability theory. For first and

second-order plants, the Aizerman conjecture has been shown to be true using the circle
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criterion and Popov criterion respectively [73](see the references therein). The Aizerman

conjecture has been refuted for the generality of third-order plants by Pliss [73]. Thus,

if stability is established via multipliers, the constant multipliers and Popov multipliers

provide the needed stability multipliers for first-order and second-order strictly-proper

stable plants respectively. The Kalman conjecture has been proved to be valid for third-

order plants [74], [75] by constructing an allowed multiplier that can be interpreted as a

first-order Zames-Falb multiplier [76]. It also has been shown in [74] that for nth-order

plants with n ≥ 4, there exists a Lur’e system with a nontrivial periodic solution and

therefore not satisfying the Kalman conjecture.

Table 4.1: Conjectures
Plant Order Aizerman Kalman

1st True True

2nd True True

3rd False True

≥ 4th False False

The aim of this work is to study the Lur’e problem (see Fig. 4.1) when the stable

linear plant is considered with (possibly nonlinear) uncertainty (see Fig. 4.3). We focus

our attention on the family of scalar static nonlinearities slope-restricted in the interval

[0, k], henceforward, ϕk.

✲♥ ✲

✻

ϕk

-

u

y

G∆

✛ ♥
❄+ f✛

Figure 4.3: The Robust Lur’e problem.

Most of the literature on this problem has been devoted to parametric uncer-

tainty [77] using Kharitonov’s Theorem [78] or equivalent results. For norm-bounded

LTI unstructured uncertainties, a robust circle criterion and robust Popov criterion for

additive and multiplicative LTI uncertainties were presented in [79].

The integral quadratic constraint (IQC) theory [46] provides a unified framework
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where the norm-bounded general uncertainties can easily be embedded with the nonlin-

ear block. With the IQC framework, the results in [79] can be extended to other robust

stability criteria for different (possibly nonlinear) uncertainty descriptions.

In this thesis, a conjecture is proposed for the robust Lur’e problem that may be true

for low-order stable plants but will be false in general just as with the Aizerman and

Kalman conjectures. In particular, this analysis investigates the appropriate stability

multiplier needed to verify this conjecture for first-order stable plants with various

norm-bounded unstructured certainties,

• Additive Uncertainties: G∆ = G(s) + w̄∆,

• Input-Multiplicative Uncertainties: G∆ = G(s) +G(s)w̄∆,

• Feedback Uncertainties: G∆ = G(s)[1 + w̄∆G(s)]−1,

where w̄ ∈ R+ and ∆ satisfying ‖∆‖L2 ≤ 1.

4.2 Notation

Let R+ be the set of all non-negative real numbers and RH∞ denote real rational

stable transfer functions. RKC means robust Kalman conjecture. LFT denotes Linear

Fractional Transformation while Lnp [0,∞) denotes the space of p-integrable functions

f : [0,∞)→ Rn(−∞,∞). The Lp norm is thus defined by ‖f‖pp =
∫∞

0 |f |p dt.

A truncation of the function f at T is given by fT (t) = f(t), ∀t ≤ T and fT (t) =

0, ∀t > T . Ln2e[0,∞) represents a space of extended functions whose truncations at any

finite time are square integrable.

Let the operator S be a map from Ln2e[0,∞) to Ln2e[0,∞), with input u and output Su.

This operator S is causal if Su(t) = S(uT )(t) for all t < T . Moreover, S is L2-stable

if for all u ∈ Ln2 [0,∞), then Su ∈ Ln2 [0,∞). Furthermore, the operator S is bounded

and finite-gain L2-stable if there exists a constant γ such that ‖Su‖2 ≤ γ‖u‖2. The

supremum of such constants defines ‖S|L2 .

Consider the feedback interconnection of a stable LTI SISO plant G and a bounded
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operator ϕ, shown in Fig. 4.1: 



y = f −Gu,

u = ϕy.

(4.1)

Since G is a stable LTI SISO plant, any exogenous input in this part of the loop can

be taken as the zero signal without loss of generality while f denotes disturbances or

nonzero initial conditions of the plant (see [80]). It is well-posed if the map (y, u) →

(0, f) has a causal inverse on L2n2e [0,∞). Furthermore, this interconnection is L2-stable

if for any f ∈ Ln2 [0,∞), then (Gu, ϕy) ∈ Ln2 [0,∞). The transfer function of the linear

plant G is denoted by G(s). Subsequently, it is assumed that the interconnected system

in Fig. 4.3 is well-posed by requiring that G(s) be strictly-proper.

4.3 Robust Interval

With the nonlinearity ϕk in Fig. 4.3 replaced by a static gain K, we then have an

uncertain system as shown in Fig. 4.4(a). G∆ is an uncertain stable plant that belongs

to a family of stable plants G∆ defined in terms of norm-bound (possibly nonlinear)

uncertainties ∆, where ‖∆‖L2 ≤ 1.

✲♥ ✲

✻

K

-

u

y

G∆

✛ ♥
❄+
✛f

(a)

transformed to

♥
✻

∆

-

v

z✛ ♥
❄+
✛f ′

✲G̃K(s)

(b)

Using LFT, the system in Fig. 4.4(a) is transformed into Fig. 4.4(b).

Figure 4.4: The Uncertain System.

Now, a well-known theorem is stated. The sufficiency and necessity of Theorem 4.1

follows from small-gain argument [50] and contradiction argument respectively.

Theorem 4.1. Assume the feedback system in Fig. 4.4(b) is well-posed. Suppose that

both G̃K(s) ∈ RH∞ and ∆ are causal and finite-gain L2-stable. Under these conditions,
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the feedback system in Fig. 4.4(b) is L2-stable for all ∆ with ‖∆‖L2 ≤ 1 if and only if

‖G̃K‖∞ < 1.

The robust interval Ir = [0,Kr) is the largest interval such that the feedback inter-

connection of any plant G∆ ∈ G∆ with a constant gain K ∈ Ir is stable. Thus, Kr is

the supremum of Ir for which the feedback system shown in Fig. 4.4(a) is stable.

4.3.1 Graphical Interpretation

From the proof of Theorem 4.1, we find that there exists an LTI uncertainty ∆LTI that

renders the feedback system shown in Fig. 4.4(a) unstable. Thus in this section, we

develop a graphical interpretation of the robust interval for such LTI uncertainties ∆LTI .

When there is no uncertainty (i.e. ∆ = 0, G∆ = G) in Fig. 4.4(a), then the following

theorem holds:

Theorem 4.2 (Nyquist Criterion [39]). The feedback interconnection of a rational stable

transfer function G(s), i.e. G(s) ∈ RH∞, and a constant gain K is stable if and only if

• infω∈R |1 +KG(jω)| 6= 0,

• KG(jω) does not encircle the −1 + 0j point.

Now consider the case for which the uncertainty in Fig. 4.4(a) is linear (i.e. ∆LTI).

The uncertain plant G∆LTI
now belongs to a family of stable LTI plants G∆LTI

. The-

orem 4.2 can then be extended to the (LTI) robust case as follows:

Corollary 4.1. Let G∆LTI
be a family of stable rational transfer functions. The feedback

interconnection of a G∆LTI
(s) ∈ G∆LTI

and a constant gain K is stable if and only if

inf
ω∈R
|1 +KG∆LTI

(jω)| > 0. (4.2)

Graphically, G∆LTI
is represented by a “loose” region about the Nyquist plot of
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Figure 4.5: Robust Nyquist Plot.
This example shows the plot of a nominal transfer function of a 2nd-order plant. The

blue-shaded region signifies the “loose” region of the norm-bounded uncertainty.

the nominal plant model (see Fig. 4.5). Corollary 4.1 provides the interval of gains for

which elements of G∆LTI
in feedback interconnection are stable. The supremum of such

gains is denoted by bound Kr and parameterizes the robust interval. Thus the “loose”

region cannot include the real interval (−∞,−1/Kr].

4.4 Robust Absolute Stability

In this section, the robust absolute stability of the robust Lur’e problem (Fig. 4.3) is

analysed. The uncertainty ∆ is combined with nonlinearity ϕk to form ∆̃ defined in

(4.5) and an augmented Lur’e problem is obtained, see Fig. 4.6.

✲♥ ✲

✻

ϕk

-

u

y

G∆

✛ ♥
❄+ f✛

(a) Robust Lur’e problem

transformed to

♥✲

✻

∆̃

+
Gp(s)

z1
z2

v1
v2

+ f ′′
✛ ♥

❄
✛

(b) Augmented Lur’e problem

Using LFT, the system in Fig. 4.6(a) is transformed into Fig. 4.6(b).

Figure 4.6: Augmented Lur’e problem.

The unifying framework of integral quadratic constraints (IQC) gives useful

input-output characterizations of the structure of an operator on a Hilbert space. IQCs

are defined by quadratic forms which are in turn defined in terms of bounded self-adjoint

operators. With the IQC framework, the norm-bounded general uncertainties can easily
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be embedded with the nonlinear block.

Definition 4.1 ( [46]). A bounded operator ∆̃ : Ln2e → Ln2e, with input z and output v,

is said to satisfy the IQC defined by a measurable bounded Hermitian-valued Π : jR→

C(2n)×(2n), if for all z ∈ Ln2 ,

∫ ∞

−∞



ẑ(jω)

v̂(jω)




∗

Π(jω)



ẑ(jω)

v̂(jω)


 dω ≥ 0, (4.3)

where ẑ and v̂ are the Fourier transform of the signals z and w respectively.

Theorem 4.3 (IQC Theorem [46]). Consider the feedback interconnection in Fig. 4.6(b).

Let Gp(s) ∈ RH∞ and let ∆̃ be a bounded causal operator. Assume that:

(i) The feedback interconnection between Gp(s) and τ∆̃ is well posed for all τ ∈ [0, 1].

(ii) There exists a measurable Hermitian–valued Π such that the operator τ∆̃ satisfies

the IQC defined by Π for all τ ∈ [0, 1].

(iii) There exists ǫ > 0 such that



Gp(jω)

I




∗

Π(jω)



Gp(jω)

I


 ≤ −ǫI ∀ω ∈ R. (4.4)

Then, the feedback system in Fig. 4.6(b) is L2-stable.1

For different uncertainty descriptions, the generalized plant Gp(s) will have different

forms whereas the augmented nonlinearity will preserve the diagonal structure

∆̃ =



ϕk 0

0 ∆


 , (4.5)

where ϕk is a SR [0, k] nonlinearity. ∆ is a causal and bounded operator. Thus, Π(jω)

1Condition (iii) is satisfied if the LHS of (4.4) is strictly negative (i.e less than 0).
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will have the same structure

Π(jω) =




0 0 kM(jω)∗ 0

0 1 0 0

kM(jω) 0 −M(jω)−M(jω)∗ 0

0 0 0 −1



, (4.6)

throughout this work, where the positive operator M(jω) is a stability multiplier for

ϕk [76]. Depending on the stability criteria, M(jω) has different parametrization:

• Constant Multipliers: M(jω) = η : η > 0.

• Popov Multipliers: M(jω) = η + jωλ : η > 0, λ ∈ R.

• Zames-Falb Multipliers: M(jω) = η +H(jω) : η > 0 and ‖h‖1 < η where h is the

impulse response of H(jω). .

Remark 4.1. Due to the structure of the augmented nonlinearity ∆̃, assumption (i) is

guaranteed if it is well-posed for τ = 1.

Remark 4.2. The existence of this stability multiplier M(jω) ensures that M(jω) ×

(G∆ + 1
k
) is strictly positive real (SPR) [81].

4.5 Robust Kalman Conjecture

This section presents a key contribution towards addressing robust preservation in anti-

windup schemes. As noted in Chapter 3, most anti-windup schemes can be recast as a

Lur’e structure. This section provides a general and concise framework which seeks to as-

certain if a Lur’e structure has the same measure of robustness as its linear counterpart.

Robust Kalman Conjecture (RKC).

Suppose G∆ is an uncertain stable plant that belongs to a family of stable plants G∆
defined in terms of norm-bound (possibly nonlinear) uncertainties ∆, where ‖∆‖L2 ≤ 1.

If the feedback interconnection between G∆ and any constant gain K ∈ [0,Kr) is
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stable, then the feedback interconnection of G∆ and any slope-restricted nonlinearity

ϕk : SR [0,Kr) is stable.

✲♥ ✲

✻

K

-

u

y

G∆

✛ ♥
❄+
✛f

(a)

✲♥ ✲

✻

ϕk

-

u

y

G∆

✛ ♥
❄+ f✛

(b)

If the system in Fig. 4.7(a) is stable, then system in Fig. 4.7(b) is stable.

Figure 4.7: Robust Kalman Conjecture (RKC).

The RKC provides the condition for which the robust absolute stability of the robust

Lur’e problem is exact. The key idea of verifying this Robust Kalman Conjecture is

determining if the robust interval of the uncertain plant coincides with the slope interval

of ϕk for which the robust Lur’e structure is absolutely stable. In subsequent sections, we

investigate and study the class of stability multipliers required to verify this conjecture

for first-order stable plants with various uncertainty descriptions.

This thesis consider the case where G(s) is a first-order plant given by,

G(s) =
a

s+ b
, a > 0 and b > 0. (4.7)

4.5.1 Additive Uncertainty

Consider the well-posed uncertain nonlinear system with w̄ ∈ R+ and ∆ satisfying

‖∆‖L2 ≤ 1 as shown in Fig. 4.8. Here, G∆ = G(s) + w̄∆.

♠ ✲ ❄✲

✻

✲
−

ϕk G(s)
z1 ❢+

w̄
z2

∆ ✲

✲

G∆

Figure 4.8: Robust Lur’e for Additive Uncertainty.

The generalized plant for the additive uncertainty which is obtained by transforming
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the robust Lur’e problem in Fig. 4.8 into the augmented Lur’e problem in Fig. 4.6, is

given by

Gp(s) =



−G(s) −w̄

1 0


 . (4.8)

Remark 4.3. It is assumed that the interconnected system in Fig. 4.6 is well-posed.

Then, due to the structure of ∆̃, well-posedness for any τ ∈ [0, 1] is guaranteed.

Corollary 4.2. Consider the nonlinear system with additive uncertainty as shown in

Fig. 4.8. Then, the system is L2-stable if there exist a stability multiplier M(jω) such

that

kM(jω)G(jω) + kG(jω)∗M(jω)∗ +M(jω) +M(jω)∗ − 1− w̄2k2(jω)M(jω)∗ > 0

(4.9)

for all ω ∈ R.

Proof. If there exists M(jω) that satisfies (4.9) for all ω ∈ R, then applying Schur

complements, M(jω) also satisfies



M(jω)(kG(jω) + I) + (kG(jω) + I)∗M(jω)∗ − 1 w̄M(jω)k

w̄M(jω)∗k 1


 > 0 (4.10)

for all ω ∈ R. Thus using M(jω) in (4.6), the obtained Π(jω) fulfils the conditions of

Theorem 4.3 and therefore the feedback interconnection in Fig. 4.8 is L2-stable. �

Lemma 4.1. Let G∆ ∈ G∆ be a first-order plant (4.7) with additive uncertainty i.e.

G∆ = G+w̄∆ as shown in Fig. 4.8, then the robust interval Ir [0,Kr) of G∆ is [0, 1/w̄).

Proof. The result is obtained by applying Theorem 4.1. The system in 4.8 is stable if

and only if,

‖Kw̄(s+ b)

s+ b+Ka
‖L2‖∆‖L2 < 1. (4.11)
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It then follows that an equivalent condition is

‖Kw̄(s+ b)

s+ b+Ka
‖L2 =

Kw̄(s+ b)

s+ b+Ka
‖∞ < 1. (4.12)

Thus it follows from (4.12) that K < 1
w̄

and Kr =
1
w̄

. �

Once we have obtained the maximum interval for which the nonlinear system could

be stable, IQC machinery is then used to study the absolute stability of the robust Lur’e

problem. The generalized plant in (4.8) is given by

Gp(s) =



− a

s+b
−w̄

1 0


 . (4.13)

Result 4.1. Let G∆ ∈ G∆ be a first-order plant (4.7) with additive uncertainty as

shown in Fig. 4.8 .By virtue of Lemma 4.1, the robust interval (Ir) of G∆ is defined as

[0, 1/w̄). Thus the system in Fig. 4.8 is L2-stable for any ϕk ∈ SR [0, 1
w̄
) nonlinearity.

Moreover, the stability multiplier M(jω) = 1
k2w̄2 is sufficient to establish this result.

Proof. It is shown that there exists an admissible constant multiplier M(jω) = η with

η > 0, such that (4.9) in Corollary 4.2 is satisfied.

Choose M(jω) = 1
k2w̄2 , then the stability condition (4.9) reduces to

1

kw̄2

2ab

ω2 + b2
+ 2(

1

k2w̄2
− 1) > 0 ∀ω ∈ R. (4.14)

The first term of (4.14) is always positive and the second term is positive provided

k < 1
w̄

.

Thus, M(jω) = 1
k2w̄2 satisfies the conditions in Theorem 4.3. As a result, the system

in Fig. 4.8 is L2-stable for any ϕk ∈ SR [0, 1
w̄
) nonlinearity. �

Remark 4.4. Result 4.1 demonstrates that the robust Kalman conjecture is true for

first-order plant with additive uncertainty. As indicated in Table 4.2, the robust circle

criterion provides an appropriate constant multiplier for this purpose.
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Graphical Interpretation of Result 4.1

Given the linear uncertain plant as G∆LTI
(s) = G(s) + w̄∆LTI , the “loose” region is

defined by discs of radius w̄ = 0.01 centered at each frequency as shown in Fig. 4.9.
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Figure 4.9: Robust Nyquist Plot.

In Fig. 4.9, the nominal plant is G(s) =
1

s+ 5
and the uncertainty satisfies ‖∆‖∞ = 1.

The value at Kr shown in Fig. 4.9, is the supremum of the robust interval Ir. Moreover,

by invoking Corollary 4.1, the obtained bound Kr satisfies :

|1 +K
a

jω + b
| > |Kw̄∆LTI | ∀ω ∈ R. (4.15)

Remark 4.5. An equivalent interpretation of (4.15) is that G(jω) avoids and does not

encircle the circle of radius |w̄∆LTI | centered at −1/Kr [82].

The obtained Kr shown in Fig. 4.9 gives a robust interval [0,Kr) that is the same as

nonlinearity’s interval SR [0, 1
w̄
). Thus, the analytical result of Result 4.1 corresponds

with the graphical interpretation of the circle criterion for the “loose” region.

Table 4.2: RKC for Additive Uncertainty

Robust Interval ϕk Slope Interval
(Ir) Multipliers : Constant -

w̄ > 0 [0, 1/w̄) SR [0, 1/w̄) -

60



4.5.2 Input-Multiplicative Uncertainty

Consider the well-posed uncertain nonlinear system with w̄ ∈ R+ and ∆ satisfying

‖∆‖L2 ≤ 1 as shown in Fig. 4.10. Here, G∆ = G(s) +G(s)w̄∆.

✻−
ϕk✲♠z1 ✲+✲ ❄❢

w̄
z2

∆ ✲

✲

G∆

G(s)

Figure 4.10: Robust Lur’e for Input-Multiplicative Uncertainty.

The generalized plant for the input-multiplicative uncertainty which is obtained by

transforming the robust Lur’e problem in Fig. 4.10 into the augmented Lur’e problem

in Fig. 4.6, is given by 

−G(s) −w̄G(s)

1 0


 . (4.16)

Remark 4.6. It is assumed that the interconnected system in Fig. 4.6 is well-posed.

Then, due to the structure of ∆̃, well-posedness for any τ ∈ [0, 1] is guaranteed.

Corollary 4.3. Consider the nonlinear system with input-multiplicative uncertainty as

shown in Fig. 4.10. Then, the system is L2-stable if there exist a stability multiplier

M(jω) such that

kM(jω)G(jω) + kG(jω)∗M(jω)∗ +M(jω) +M(jω)∗ −

1− w̄2k2M(jω)G(jω)G(jω)∗M(jω)∗ > 0 (4.17)

for all ω ∈ R.

Proof. If there exists M(jω) that satisfies (4.17) for all ω ∈ R, then applying Schur
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complements, M(jω) also satisfies



M(jω)(kG(jω) + I) + (kG(jω) + I)∗M(jω)∗ − 1 w̄M(jω)G(jω)k

w̄kG(jω)∗M(jω)∗ 1


 > 0 (4.18)

for all ω ∈ R. Thus using M(jω)in (4.6), the obtained Π(jω) fulfills the conditions

of Theorem 4.3 and therefore the feedback interconnection in Fig. 4.10 is L2-stable. �

Lemma 4.2. Let G∆ ∈ G∆ be a first-order plant (4.7) with input-multiplicative un-

certainty i.e. G∆ = G[1 + w̄∆] as shown in Fig. 4.10. The robust interval Ir [0,Kr)

of G∆ is:

Ir =





[0,∞) if w̄ ≤ 1,

[0, b
a(w̄−1)) if w̄ > 1.

(4.19)

Proof. The result is obtained by applying Theorem 4.1. The system in 4.10 is stable if

and only if,

‖ w̄Ka

s+ b+Ka
‖L2‖∆‖L2 < 1. (4.20)

It then follows that an equivalent condition is

‖ w̄Ka

s+ b+Ka
‖L2 = ‖

w̄Ka

s+ b+Ka
‖∞ < 1. (4.21)

It follows from (4.21) that

(w̄ − 1)Ka ≤ b. (4.22)

Thus,

• If w̄ ≤ 1,K > 0 and Kr =∞.

• If w̄ > 1,K < b
a(w̄−1) and Kr =

b
a(w̄−1) . �
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Once we have obtained the maximum interval for which the nonlinear system could

be stable, IQC machinery is then used to study the absolute stability of the robust Lur’e

problem. The generalized plant in (4.16) is given by

Gp(s) =



− a

s+b
−w̄ a

s+b

1 0


 . (4.23)

Result 4.2. Let G∆ ∈ G∆ be a first-order plant (4.7) with input-multiplicative uncer-

tainty as shown in Fig. 4.10. By virtue of Lemma 4.2, the robust interval (Ir) of G∆

is defined as (4.19). Thus the system in Fig. 4.10 is L2-stable for any

ϕk ∈





SR [0,∞) if w̄ ≤ 1,

SR [0, b
a(w̄−1)) if w̄ > 1.

(4.24)

Moreover, the stability multiplier M(jω) = (ka+b)b2

k2w̄2a2
+ jω (ka+b)b

k2w̄2a2
is sufficient to establish

this result.

Proof. It is shown that there exists an admissible Popov multiplier M(jω) = η + jωλ

with η > 0, λ ∈ R such that (4.17) in Corollary 4.3 is satisfied.

Set M(jω) = η+jωλ, substitute G(jω) and let xω = b2+ω2, then the stability condition

(4.17) reduces to

2ηkab

xω
+

2ω2λka

xω
+ 2η − 1− k2w̄2(η2 + ω2λ2)

a2

xω
> 0 ∀ω ∈ R. (4.25)

Choose η = λb with λ > 0, it then follows that an equivalent stability condition is

2λka+ 2λb− 1− k2w̄2a2λ2 > 0. (4.26)

Choose λ = kab+b2

k2w̄2a2
in (4.26) and the stability condition (4.26) reduces to

b2 + 2kab+ k2a2(1− w̄2) > 0. (4.27)
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Thus,

• If w̄ ≤ 1, k > 0.

• If w̄ > 1, k < b
a(w̄−1) . �

Remark 4.7. Result 4.2 demonstrates that the robust Kalman conjecture is true for

first-order plant with input-multiplicative uncertainty ∀ w̄ > 0. As indicated in Table 4.3,

the robust Popov criterion provides an appropriate Popov multiplier for this purpose.

However, it can be shown that the robust circle criterion is only adequate when w̄ ≥ 2 (see

Appendix A.1).

Graphical Interpretation of Result 4.2

Given the family of uncertain plants as G∆LTI
(s) = G(s)+w̄G(s)∆LTI , then the “loose”

region is defined by discs of radius w̄|G(jω)| centered at each frequency. The robust

Nyquist and the corresponding robust Popov plots having ellipses with semi-axes of

w̄|G(jω)| and ωw̄|G(jω)| centered at each frequency are illustrated in Fig. 4.11 for

w̄=1.3.
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Figure 4.11: (a) Robust Nyquist and (b) Robust Popov Plots.

In Fig. 4.11, the nominal plant is G(s) =
1

s+ 5
and the uncertainty satisfies ‖∆‖∞ = 1.

The value at Kr shown in Fig. 4.11, is the supremum of the robust interval Ir. Moreover,
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by invoking Corollary 4.1, the bound Kr satisfies :

|1 +K
a

jω + b
| > |Kw̄

a

jω + b
∆LTI | ∀ω ∈ R. (4.28)

Remark 4.8. An equivalent interpretation of (4.28) is that Gm = G(jω)+K−1

G(jω) − K−1

avoids and does not encircle the circle of radius |w̄∆LTI | centered at −1/Kr [77].

It can be observed from Fig. 4.11(a) that − 1

Kr
6= −1

k
and therefore the robust Circle

criterion is not enough to establish the veracity of the RKC. However, the obtained Kr

from the Popov plot shown in Fig. 4.11(b) gives a robust interval [0,Kr) that is the same

as nonlinearity’s interval i.e. − 1

Kr
= −1

k
. Thus, the analytical result of Result 4.2 cor-

responds with the graphical interpretation of the Popov criterion for the “loose region”.

Table 4.3: RKC for Input-Multiplicative Uncertainty

Robust Interval ϕk Slope Interval
(Ir) Constant Multi. Popov Multi.

w̄ ≤ 1 [0, ∞) SR [0, 4b
aw̄2 ) SR [0, ∞)

1 < w̄ < 2 [0, b
a(w̄−1)) SR [0, 4b

aw̄2 ) SR [0, b
a(w̄−1))

w̄ ≥ 2 [0, b
a(w̄−1)) SR [0, b

a(w̄−1)) SR [0, b
a(w̄−1))

4.5.3 Feedback Uncertainty

Consider the well-posed uncertain nonlinear system with w̄ ∈ R+ and ∆ satisfying

‖∆‖L2 ≤ 1 as shown in Fig. 4.12. Here, G∆ = G(s)[1 + w̄∆G(s)]−1.

♠ ❄

✻

✲
−

ϕk G(s)
z1 ❢

w̄
z2

∆ ✛

✲−

G∆

✲

Figure 4.12: Robust Lur’e for Feedback Uncertainty.

The generalized plant for the feedback uncertainty which is obtained by transforming
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the robust Lur’e problem in Fig. 4.12 into the augmented Lur’e problem in Fig. 4.6, is

given by 

−G(s) w̄G(s)

G(s) −w̄G(s)


 . (4.29)

Remark 4.9. It is assumed that the interconnected system in Fig. 4.6 is well-posed.

Then, due to the structure of ∆̃, well-posedness for any τ ∈ [0, 1] is guaranteed.

Corollary 4.4. Consider the nonlinear system with feedback uncertainty as shown in

Fig. 4.12. Let T = [w̄G(jω)∗G(jω) − w̄W (jω)kG(jω)], then the system is L2-stable

if there exist a stability multiplier W (jω) such that [1− w̄2G(jω)∗G(jω)]−1 > 0 and

kM(jω)G(jω) + kG(jω)∗M(jω)∗ +M(jω) +M(jω)∗ −

G(jω)∗G(jω)− T [1− w̄2G(jω)∗G(jω)]−1T ∗ > 0 (4.30)

for all ω ∈ R.

Proof. If there exists M(jω) that satisfies (4.30) for all ω ∈ R, then applying Schur

complements, M(jω) also satisfies




M(jω)(kG(jω)+I)+(kG(jω)+I)∗M(jω)∗−G(jω)∗G(jω) w̄G(jω)∗G(jω)−w̄M(jω)kG(jω)

w̄G(jω)∗G(jω)−w̄kG(jω)∗M(jω)∗ 1−w̄2G(jω)∗G(jω)




> 0 ∀ ω ∈ R. (4.31)

Thus using M(jω) in (4.6), the obtained Π(jω) fulfills the conditions of Theorem 4.3

and therefore the feedback interconnection in Fig. 4.12 is L2-stable. �

Remark 4.10. The uncertain plant G∆ is stable if w̄ < b
a
.
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Lemma 4.3. Let G∆ ∈ G∆ be a first-order plant (4.7) with an feedback uncertainty i.e.

G∆ = G[1 + ∆Gw̄]−1 as shown in Fig. 4.12. For w̄ < b
a

the robust interval Ir [0,Kr)

of G∆ is [0,∞).

Proof. The result is obtained by applying Theorem 4.1. The system in 4.12 is stable if

and only if,

‖ w̄a

s+ b+Ka
‖L2‖∆‖L2 < 1. (4.32)

It then follows that an equivalent condition is

‖ w̄a

s+ b+Ka
‖L2 = ‖

w̄a

s+ b+Ka
‖∞ < 1. (4.33)

It follows from (4.33) that

K > w̄ − b

a
. (4.34)

Thus, if w̄ ≤ b
a
, K > 0 and Kr =∞. �

Once we have obtained the maximum interval for which the nonlinear system could

be stable, IQC machinery is then used to study the absolute stability of the robust Lur’e

problem. The generalized plant in (4.29) is given by

Gp(s) =



− a

s+b
−w̄

a
s+b

0


 . (4.35)

Result 4.3. Let G∆ ∈ G∆ be a first-order plant (4.7) with feedback uncertainty as

shown in Fig. 4.12. By virtue of Lemma 4.3, for w̄ < b
a

the robust interval (Ir) of

G∆ is defined as [0,∞). Thus, for w̄ < b
a

the system in Fig. 4.12 is L2-stable for any

ϕk ∈ SR [0,∞). Moreover, the stability multiplier M(jω) = (ka+b)b−w̄2a2

k2w̄2a2
is sufficient to

establish this result.
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Proof. It is shown that there exists an admissible constant multiplier M(jω) = η with

η > 0 such that (4.30) in Corollary 4.4 is satisfied.

Set M(jω) = η, substitute G(jω) and let xω = b2 + ω2, then for all ω ∈ R the stability

condition (4.30) reduces to

2ηkab

xω
+ 2η − a2

xω
− xω

xω − a2w̄2
[
w̄2a4

x2ω
− 2w̄2ηka3b

x2ω
+

w̄2η2k2a2

xω
] > 0. (4.36)

Factorizing and collecting like terms together, stability condition (4.36) is equivalent to

2ηkab

xω
+ 2η − a2

xω

[xω − 2ηkabw̄2

xω − a2w̄2

]
− η2k2w̄2a2

xω − a2w̄2
> 0. (4.37)

Now, since xω ≥ b2, it then follows that the stability condition (4.37) reduces to

2ηkab+ 2η(b2 − w̄2a2)− η2k2w̄2a2 > 0. (4.38)

Let τ = b2− w̄2a2 and choose η = kab+τ
k2w̄2a2

, then the stability condition (4.38) is reduced

to

k2a2(b2 − w̄2a2) + 2kabτ + τ2 > 0. (4.39)

Thus, for b < w̄
a
, we have k > 0. �

Remark 4.11. Result 4.3 demonstrates that the robust Kalman conjecture is true for

first-order plant with feedback uncertainty. As indicated in Table 4.4, the robust circle

criterion provides an appropriate constant multiplier for this purpose.

Graphical Interpretation of Result 4.3

In this case, the “loose” region is defined by discs of G(jω)[1+w̄∆LTIG(jω)]−1 as shown

in Fig. 4.13 for w̄ = 3.
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Figure 4.13: Robust Nyquist Plot.

In Fig. 4.13, the nominal plant is G(s) =
1

s+ 5
and the uncertainty satisfies ‖∆‖∞ = 1.

The value at Kr shown in Fig. 4.13, is the supremum of the robust interval Ir. Moreover,

by invoking Corollary 4.1, the obtained bound Kr satisfies :

|s+ b

a
+K| > |w̄∆LTI | ∀ω ∈ R. (4.40)

Remark 4.12. An equivalent interpretation of (4.40) is that Gm = G(jω)+K−1

K−1G(jω)
−K−1

avoids and does not encircle the circle of radius |w̄∆LTI | centered at −1/Kr.

The obtained Kr shown in Fig. 4.13 gives a robust interval [0,∞) that is the same as

nonlinearity’s interval SR [0,∞). Thus, the analytical result of Result 4.3 corresponds

with the graphical interpretation of the circle criterion for the “loose” region.

Table 4.4: RKC for Feedback Uncertainty

Robust Interval ϕk Slope Interval
(Ir) Multipliers : Constant -

w̄ < b
a

[0, ∞) SR [0, ∞) -

4.6 Conclusion

This chapter has presented a new robust absolute stability conjecture called the robust

Kalman conjecture. As indicated in Table 4.5, with the aid of different stability multi-

pliers, it has been shown that this robust Kalman conjecture is true for first-order stable
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plants with additive, input-multiplicative and feedback uncertainties. A graphical inter-

pretation of the result is given for each case when the norm-bound perturbations includes

LTI uncertainties. The practical significance of this conjecture, albeit for higher -order

systems, is highlighted by recent considerations of robust preservation in anti-windup

control systems [24, 83, 84]. Thus, in general, robust control of Lur’e-type nonlinear

systems satisfying this novel conjecture can therefore be designed using linear robust

control methods.

Table 4.5: Robust Kalman Conjecture For First-Order Plants
Uncertainty Descriptions

Additive Input-Multiplicative Feedback

Sufficient
Constant Popov Constant

Multiplier
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Summary of PART I

The concept of stability in the sense of Lyapunov and input-output properties has been

discussed in Chapter 2. In particular, the discrete Lyapunov theorem, the IQC theorem

and the Schur Complement Lemma discussed in this chapter are key mathematical tools

required for the contributions presented in Chapter 4 and Chapter 8 respectively. The

issue of robust preservation in anti-windup schemes is briefly highlighted in Chapter 3

and it is also concluded therein that most notable anti-windup schemes could be trans-

formed into an equivalent Lur’e structure . In Chapter 4, a fairly general and abstract

framework (based on the Lur’e structure) known as the "Robust Kalman Conjecture"

is presented to study the issue of this robust preservation for first-order SISO plants.

It is shown that this robust Kalman conjecture is true for first-order stable plants with

additive, input-multiplicative and feedback uncertainties. The practical significance of

this conjecture, albeit for higher -order systems, is highlighted by recent considerations

of robust preservation in anti-windup control systems. Thus, in general, robust control

of Lur’e-type nonlinear systems satisfying this novel conjecture can be designed using

linear robust control methods.
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PART II:

Optimization in Anti-windup Control
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Chapter 5

Introductory Background on

Optimization

Online-optimizing controllers such as MPC and the two-stage IMC anti-windup [11] re-

quire some sort of optimization routine. A number of optimization approaches have been

reported in literature for MPC applications. These approaches can be easily applied

to other classes of emerging online-optimizing anti-windup (e.g. [11]). The suitability

of these approaches for high-speed applications depends on factors such as (a) ability

to meet hard real-time constraints on the solution-time (b) tight practical complex-

ity certificates (c) Ease of implementation. At this point, the various approaches are

briefly discussed, with emphasis on their suitability or otherwise for online-optimizing

anti-windup. These approaches as reported in the literature generally fall into three

main categories as follows:

1. One approach is multi-parametric programming, which allows one to pre-compute

the solution for every state offline [94, 95]. The explicit solution is a piece-wise

affine map over a polyhedral partition of the state-space and can be stored

efficiently such that fast online look-up is ensured. However, as the control ac-

tion implemented online is in the form of a lookup table, the explicit MPC cannot

deal with applications whose dynamics, cost function and/or constraints are
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time-varying problems [96]. Moreover, the number of entries in the table can grow

exponentially with the size of the optimization problem limiting the applicability

of explicit MPC to very small problems. Recent work on reducing the complexity

of explicit MPC while maintaining stability and feasibility of the obtained control

law can be found in [97–99].

2. Online optimization methods are generally used for large-scale problems, the two

main proponents being interior point [100,101] and active set methods [102]. The

authors of [96,103] report a fast implementation of an interior point method where

a significant speed-up is gained by exploiting the structure of the involved matrices

as well as by early stopping and warm-starting from a solution obtained at the pre-

vious time-step. Successful implementation of both active-set and interior-point

methods to fast real-time application can be found in [104]. One of the main issues

with the aforementioned online optimization methods is the inability to guarantee

ǫ-suboptimality within the hard real-time constraints (e.g. sampling interval) of

a given application. Such certificates can be obtained for interior point methods

but the computed bounds are far off from the practically observed ones [105].

3. Recently, there has been significant interest in using first-order methods [20, 106,

107] for the online optimization of linear-quadratic MPC problems. Compared to

other solution methods for quadratic programs, first-order methods do not require

the solution of a linear system of equations at every iteration, which is often a lim-

iting factor for embedded platforms with modest computational capability. This

feature, coupled with the observation that medium-accuracy solutions are often

sufficient for good control performance [96], make first-order methods promising

candidates for efficient online optimization. In particular, complexity certificates

for fast gradient methods reported in [21, 108] allows one to derive practically

less-conservative bounds on the computational effort.

More often than not, we are interested in the optimization of convex formulation of

the anti-windup problem. Thus, this chapter subsequently discusses a special category
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of optimization problems called convex optimization. Section 5.2 explores the uncon-

strained case while Section 5.3 looks at the constrained counterpart.

5.1 What is Convex Optimization?

A set X is convex if for any 2 points x0, x1 ∈ X we have that λx1 + (1− λ)x0 ∈ X for

all 0 ≤ λ ≤ 1. An objective function f : X → R defined on a set X is convex if and only

if the epigraph of f is a convex set. Furthermore, the epigraph of f is a convex set if

and only if it satisfies Jensen’s inequality,

f(λx1 + (1− λ)x0) ≤ λf(x1) + (1− λ)f(x0); ∀x0, x1 ∈ X , ∀ 0 ≤ λ ≤ 1.

Convex optimization is a class of optimization wherein the objective function is

well-defined, convex and its domain also defines a feasible convex set.

5.2 Unconstrained Optimization

Consider the following unconstrained optimization of a convex function f :

UOP : min
x∈R

f(x), (5.1)

where f : Rn → R is a continuous differentiable convex function and x ∈ Rn is a real

vector. If the domain of f , dom f , is a convex set (e.g. Rn), then UOP is a convex

optimization problem. In this case, a necessary and sufficient condition for point x∗ to

be a minimizer of f is ∇f(x∗) = 0 [85]. Furthermore, if f is bounded below, then there

exists a unique x∗ : f(x∗) = f∗ with f∗ ≤ f(x) ∀ x ∈ Rn [86].

In a few special cases, an analytic solution of (5.1) can be obtained but usually the

problem must be solved by an iterative algorithm. An iterative algorithm computes a

sequence of iterates x0, x1, · · · ∈ dom f with f(xk)→ f∗ as k →∞. Such a sequence of

points is called a minimizing sequence for the problem (5.1) if f(xk+1) < f(xk), ∀ k > 0.
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The algorithm is terminated when f(xk) − f∗ ≤ ǫ, where ǫ > 0 is some specified

tolerance. Iterative algorithms are of the form

xk+1 = xk + αkdk, (5.2)

where αk, dk denotes the step length and the search direction at the kth iteration re-

spectively. In this section, the general descent method for unconstrained optimization

is discussed. Other types of algorithms also applicable to unconstrained optimization

are explored under constrained optimization.

5.2.1 Descent Methods

Monotone iterative algorithms require that f(xk+1) < f(xk) for all k ≥ 0 and

they are also known as descent methods [86].

Algorithm 5.1 ( [86]). The outline of a general descent method is as follows:

Algorithm 5.1 Descent method.

Given a starting point x0 ∈ dom f .

repeat until stopping criterion is satisfied

1. Descent direction: Compute dk.

2. Line-Search: Choose a step-size αk > 0.

3. Update: xk+1 = xk + αkdk.

end (repeat)

Descent Direction. The search direction in a descent method must satisfy

∇f(xk)Tdk < 0 i.e. the descent direction must make an acute angle θk with the negative

gradient. ∇f(xk)Tdk is known as the directional derivative of f(x) at xk in the direction
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of dk. The directional derivative gives the decrease in f along the direction of dk. A

natural choice for the search direction is the unit-norm negative gradient,

dk = −∇f(xk)/‖∇f(xk)‖,

which minimizes the first-order Taylor approximation of f(x+d) at xk subject to ‖d‖ ≤ 1.

The resulting algorithms are called gradient-decent methods if f(xk+1) < f(xk) or

simply called gradient methods if otherwise. Provided the Hessian ∇2f(x) > 0, another

good choice is the Newton direction dk = −∇2f(xk)
−1∇f(xk) which minimizes the

second-order Taylor approximation of of f(x+ d) at x. Similarly, this choice results in

the Newton-decent methods if f(xk+1) < f(xk) or simply Newton methods if otherwise.

Furthermore, any descent direction dk must satisfy the Zoutendijk condition [86] i.e.

∞∑

k=0

cos2 θk‖∇f(xk)‖2 <∞, where cos θk =
−∇f(xk)Tdk
‖∇f(xk)‖‖dk‖

. (5.3)

The Zoutendijk condition dictates how far the descent direction dk is allowed to deviate

away from the negative gradient direction −∇f(xk).

Line-Search. The descent condition f(xk+1) < f(xk) is not sufficient to guarantee

that iterates converge to a minimizer of f . It is, however, sufficient to select a suitable

step-size αk such that f(xk+1) is minimized along the descent direction dk. The com-

putation of αk is a line-search whose solution can be obtained either by:

1.) Exact line-search computes the step-length α∗
k that globally minimizes

φ(α) = f(xk + αdk), α > 0. (5.4)

The step-size obtained by the exact line-search is called the exact step-size or Cauchy

step-size. The corresponding descent method is known as the classical steepest des-

cent (SD) method i.e. αSD
k = α∗

k. In particular, for the quadratic convex functions, the
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exact step-length can be computed as

αSD
k = α∗

k =
dTk dk

dTkHdk
, (5.5)

where H is the Hessian matrix. However, in general an exact line-search is impossible or

too expensive. For all convex f ∈ F1,1
L (Rn) , it can be shown that the fixed step-length

α = 1/L guarantees a decrease that results in optimal convergence rate for this class of

functions [23].

2.) Inexact line-search attempts to identify a step-length that achieves adequate

reductions in f at minimal cost. One of the well-known and useful inexact line-search

was proposed by Armijo (see [86]). The Armijo condition ensures that αk should give

a sufficient decrease in the objective function as measured by the inequality:

f(xk + αkdk) ≤ f(xk) + αkc1∇f(xk)Tdk. (5.6)

Using the so-called backtracking approach to enforce (5.6) rules out unacceptable short

step-sizes. Alternatively, the Goldstein conditions and the Wolfe conditions (see [86])

impose an additional condition to the Armijo condition in order to ensure that the

step-lengths αk are not too short.

Algorithm 5.2 ( [86]). The outline of the backtracking line-search is as follows:

Algorithm 5.2 (Backtracking Line-Search).

Given ᾱ > 0, ρ ∈ (0, 1), c ∈ (0, 1). Set α← ᾱ.

repeat until f(xk + α∆xk) ≤ f(xk) + αc∇f(xk)T∆xk

1. Set α← ρα.

end (repeat)

Terminate with αk = α.

Performing back-tracking ensures that the inexact line-search terminates finitely [87].
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5.3 Constrained Optimization

The mathematical formulation for constrained optimization problem is expressed as

follows:

COP : min
x∈Rn

f(x) (5.7a)

s.t gi(x) = 0, for i = 1, · · · , r, (5.7b)

hi(x) ≤ 0, for i = 1, · · · ,m, (5.7c)

where x ∈ Rn is a real vector and f, hi, gi are continuous functions. Moreover, the con-

strained optimization problem (COP) is convex if the objective function f is convex,

constraint function hi is convex and constraint function gi is affine. Examples include

linear programming and convex quadratic programming. Briefly, linear programming is

a constrained optimization problem wherein both the objective function and constraints

are linear, while the convex quadratic programming refers to the case involving a quad-

ratic objective function and linear constraints. The simplex algorithm, popularized by

Dantzig in 1947 (see [88]), is a very efficient method for solving linear programming.

However, Karmarkar [89] introduced in 1984 a new class of methods called interior-point

methods. Most of the ideas underlying this new class of methods originate from the

nonlinear optimization domain. Alternative methods include the active-set methods

and variants of projected gradient methods. These methods are both theoretically and

practically efficient and can be generalized to other types of constrained optimization

problems specifically convex quadratic programming.

Optimality Conditions

The KKT conditions generalizes the classical Langrange multiplier method to include

inequality constraints. Karush-Kuhn-Tucker (KKT) conditions are necessary optim-

ality conditions pertaining to nonlinear constrained optimization with a differentiable

objective. The COP has a primal optimal (x∗) and dual optimal (β∗, λ∗) with zero

duality gap if the points x∗, β∗, λ∗ satisfy the KKT conditions [85, pg. 243]:
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Dual Feasibility ∇fi(x∗) +
r∑

i=1

β∗
i∇gi(x∗) +

m∑

i=1

λ∗
i∇hi(x∗) = 0, (5.8a)

Primal Feasibility





gi(x
∗) = 0 i = 1 · · · r,

hi(x
∗) ≤ 0 i = 1 · · ·m,

(5.8b)

Dual Feasibility





λ∗
i ≥ 0 i = 1 · · ·m,

β∗
i ∈ R i = 1 · · · r,

(5.8c)

Complementary Slackness
{
λ∗
ihi(x

∗) = 0 i = 1 · · ·m. (5.8d)

Moreover, the KKT conditions are also sufficient for "optimality with zero duality-gap"

when the COP is convex (i.e f, hi are convex and gi is affine) [85, pg. 244], which is

the case for linear programming and convex quadratic programming. Subsequently a

special case of the convex COP is considered.

min
x∈Rn

1

2
xTHx+ cTx (5.9a)

s.t Ax ≤ b, for i = 1, · · · ,m, (5.9b)

where H ≥ 0 and A ∈ Rm×n with full row rank. The COP (5.9) is known as convex

quadratic programming. In this case, the KKT conditions for (5.9) reduce to

Dual Feasibility Hx+ c+ATλ = 0, (5.10a)

Primal Feasibility
{
Ax− b ≤ 0, (5.10b)

Dual Feasibility
{
λi ≥ 0 i = 1 · · ·m, (5.10c)

Complementary Slackness
{
λi(a

T
i x− bi) = 0 i = 1 · · ·m, (5.10d)

where aTi is the ith row of matrix A and bi is the ith row of column vector b.
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5.3.1 Active-Set Method

Primal active-set methods generate iterates that remain feasible with respect to the

primal problem while steadily decreasing the objective function f(x). The active

set A(x∗) consists of the indices of the constraints for which equality holds

at x∗: A(x∗) = {i | aTi x = bi}. This method finds a step from one iterate to the next

by solving a quadratic sub-problem on a subset defined by the current estimate of the

active set A(x∗). This subset is referred to as the working-set and is denoted at the kth

iterate by Wk.

Algorithm 5.3 ( [86]). The outline of a basic active-set method is as follows:

Algorithm 5.3 Basic active-set algorithm.

Given a feasible point x0 and a working-set W0.1

repeat until stopping criterion is satisfied

1. Determine if xk minimizes (5.9a) subject to the constraints in Wk. This is done

by reformulating as follows. Let ∆xk = x − xk. By substituting for x into f(x)

and ignoring constant terms, then sub-QP problem can be expressed as





min
∆xk

1
2∆xTkH∆xk + zTk ∆xk

aTi ∆xk = bi − aTi xk = 0, i ∈ Wk.

(5.11)

The KKT conditions of this sub-QP problem (5.11) is solved for ∆xk, λk:



H AT

w

Aw 0






∆xk

λk


 =



−zk
0


 , (5.12)

where zk = Hxk + c and Aw is the matrix of ai ∈ Wk. If ∆xk = 0, go to step 3,

otherwise continue with the next step.

1W0 comprises all the equality constraints (none in this case) and some of the inequality constraints
imposed as equalities
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2. If ∆xk 6= 0, then the current feasible set xk does not minimize f(x) with respect

to the working-set Wk. Then ∆xk is used as a search direction and the next

feasible point is found as xk+1 = xk +(αk∆xk). An explicit definition of step-size

parameter αk can be derived by considering only what happens to the constraints

i /∈ Wk, since the constraints i ∈ Wk will certainly be satisfied regardless of the

choice of αk (see [86]).

αk = min
ai∆xk>0

{1, bi − aixk
ai∆xk

} i /∈ Wk. (5.13)

For αk < 1, the vector(s) of ai /∈ Wk corresponding to the blocking constraints is

adjoined to Wk to form a next working-set. Wk+1 ← Wk + Anw, where Anw is

the matrix of ai /∈ Wk.

3. Here, f(xk) is optimal with respect to the working-set Wk. Examine KKT mul-

tipliers λk of (5.12).

(a) If λk ≥ 0, then optimal solution obtained.

(b) If λi,k < 0, then the constraint with the most-negative λk is removed from

the working set so as to decrease the cost further while remaining in the

feasible space. Wk+1 ←Wk −Aw .

end (repeat)

Updating of both {ai, bi} ∈ Wk and {ai, bi} /∈ Wk is done at each iteration. It is

noted that when the working-set Wk is empty, the next iteration starts by solving an

unconstrained sub-QP problem which yields ∆xk = −H−1zk and the corresponding

KKT multipliers are set to 0.

5.3.2 Interior-Point Method

The interior-point approach has proved to be an attractive alternative when the prob-

lems are large and convex. In addition, this approach has the advantage that the system
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of linear equations to be solved at each iterate has the same dimension and structure

throughout the algorithm, making it possible to exploit any structure inherent in the

problem.

Iterate Space:

Primal-Dual interior point methods compute a sequence of strictly feasible primal-dual

iterates by applying Newton’s method to solve the KKT conditions, modifying the

search directions and step-size so that the iterates remain strictly feasible. Introduce

dual slack variable s in constraints (5.10) and the KKT conditions become:

Dual Feasibility Hx+ c+ATλ = 0, (5.14a)

Primal Feasibility





Ax− b+ s = 0,

si ≥ 0,

(5.14b)

Dual Feasibility
{
λi ≥ 0 i = 1 · · ·m, (5.14c)

Complementary Slackness
{
λisi = 0 i = 1 · · ·m, (5.14d)

Using the standard form notation, we define the feasible set F to be the set satisfying

F = {(x, λ, s) | Hx+ c+ATλ = 0, Ax− b+ s = 0, s ≥ 0, λ ≥ 0} (5.15)

and the associated strictly feasible set F+ to be the subset of F satisfying

F+ = {(x, λ, s) | Hx+ c+ATλ = 0, Ax− b+ s = 0, s > 0, λ > 0}. (5.16)

The convex quadratic program (5.9) can be solved by finding solutions of the set of

equations (5.14).

Central Path-Following:

Given a current iterate (x, s, λ) ∈ F+ that satisfies (s > 0, λ > 0). Define a comple-
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mentarity measure

ν =
λT s

m

and define F (x, s, λ, σν)

F (x, s, λ, σµ) =




Hx+ c+ATλ

Ax− b+ s

ΛSe− σµe



, λ, s ≥ 0, (5.17)

where Λ = diag(λ1, λ2, · · ·λm), S = diag(s1, s2, · · · sm), e = (1, · · · , 1)T andσ ∈ [0, 1].

The central path is defined as the set of points (xk, λk, sk) such that

F (xk, sk, λk, σµ) = 0. (5.18)

The solutions of the perturbed KKT conditions (5.18) for all values of σ ∈ [0, 1] and

ν ≥ 0, define the central path, which is a trajectory that leads to the solution of the

original KKT conditions (5.14) as ν tends to zero. A step with σ = 1 is referred to as a

centering step and a step with σ = 0 is referred to as an affine-scaling step. The choice

of the centering parameter σ ∈ [0, 1] provides a trade-off between moving towards the

central path and moving towards the optimal solution of the optimization problem.

Descent Direction:

The perturbed KKT conditions (5.18) are now solved using first-order Newton’s method

to obtain the descent direction. Given strictly feasible iterate (xk, λk, sk) ∈ F+, the

Newton’s step is then defined by the linear system of equations,




H A 0

AT 0 I

0 Sk Λk







∆xk

∆λk

∆sk



=




0

0

ΛkSke− σµke



, (5.19)

where ∆xk, ∆λk, ∆sk are the descent directions. The descent directions can now be

obtained by Cholesky factorization and two back-solves.
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Step-Size

Here, the next strictly feasible iterate is obtained with




xk+1

λk+1

sk+1



=




xk

λk

sk



+ αk




∆xk

∆λk

∆sk



, (5.20)

where αk ∈ [0, 1] is computed such that the inequality λk+1 > 0, sk+1 > 0 is retained.

As such all subsequent iterates also belong F+.

Algorithm 5.4 ( [86]). The outline of a basic interior-point algorithm is as follows:

Algorithm 5.4 Basic interior-point algorithm.

Given 0 < σ < 1 and a feasible point (x0, λ0, s0) ∈ F+.

repeat until stopping criterion is satisfied

1. Solve (5.19) and determine Newton’s step




∆xk

∆λk

∆sk




.

2. Compute the next strictly feasible iterate according to (5.20).

3. µk+1 ← σµk.

end (repeat)

5.3.2.1 Infeasible-Interior-Point Method

Unlike the interior-point method, the infeasible-interior-point method admits iterates

(x, λ, s) /∈ F+ and only requires λ > 0, s > 0. The algorithm is similar to the interior-

point method except that two new conditions are imposed on the choice of the step-size

αk [90]. Firstly, the neighbourhood of the infeasible iterates is restricted to the amount

by which the violated constraints (Hx+AT y + f = 0, Ax− b+ s = 0) are required to
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decrease. Secondly, Armijo-like condition is enforced to ensure that µ decrease by at

least some fraction of the predicted decrease at each step. Alternative implementation

of exterior-point methods include [91] and Mehrotra predictor-corrector algorithm [92].

5.3.3 Projected Gradient Method

Active-set methods tend to move along edges and faces of boundary of feasible set. As

a result, an active-set method changes its working set of constraints slowly, usually by

a single index at each iteration. A second class of methods known as the projected

gradient method, allow more substantial rapid changes to the working set by choosing a

descent direction ∆x and searching along the piecewise linear path P(x−α∆x), where

α > 0 and P is the projection onto a feasible set. It is most efficient when the constraints

are simple in form in particular, when there are only bounds on the variables.

Consider the COP problem rewritten as,

min
x

f(x) s.t. x ∈ X . (5.21)

The projection of a point y onto X is the mapping P : Rn → Z defined by

P(y) = argmin
x
‖x− y‖ s.t. x ∈ X . (5.22)

Each iteration of the gradient projection algorithm consists of two stages. In the first

stage, we search along the steepest descent direction from the current point xk i.e.

xk+1 = xk + αk∆xk, (5.23)

and then project the possible iterate xk+1 on X to obtain a feasible iterate x̄k+1. The

resulting feasible direction (∆̄xk = x̄k+1 − xk) is also known as the projected gradient.

In the the second stage, we take a step along the feasible direction using stepsize ρk i.e

xck+1 = xk + ρk∆̄xk, (5.24)

There are a number of choices for determining the parameter αk and ρk to ensure

convergence(see [93]). A popular choice is the "Armijo Rule Along Feasible Direction",
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which sets αk = α and uses the Armijo rule to find the local minimizer f(x) along

the resulting feasible direction. This first local minimizer is called the Cauchy point

xck+1. Furthermore, an improvement step of the Cauchy point is computed for better

convergence rate by approximately solving subproblem which explores the face of the

feasible box on which the Cauchy point lies (see [86] for details). Here, an outline for a

projected gradient method for simple constraint set X = {x : l < x < u} is presented.

Algorithm 5.5 ( [86]). The outline of a projected gradient method is as follows:

Algorithm 5.5 Basic projected gradient algorithm.

Given a starting point x0 ∈ dom f , α > 0, αk ← α ∀k and li < µi,

where li, ui and xi,k are the ith row of l, µ, x respectively at the kth iterate.

repeat until stopping criterion is satisfied

1. Compute possible iterate along descent direction xk+1 = xk + αk∆xk.

2. Obtain x̄k+1 = P(xk+1). In this case it is given by,

P(xi,k+1) =





li if xi,k+1 < li,

xi,k+1 if li ≤ xi,k+1 ≤ ui,

ui if xi,k+1 > ui.

(5.25)

3. Compute projected gradient, ∆̄xk = x̄k+1 − xk.

4. Compute xck+1 : xck+1 = xk + ρk∆̄xk, ρk satisfies Armijo condition.

5. Update xk+1 : xk+1 = xck+1, No improvement step.

end (repeat)

5.3.4 Projected Fast Gradient Method

A very important extension of projected gradient method is discussed here. It is a mix

of the projected gradient method (see § 5.3.3) and the Nesterov gradient method. [23].
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Algorithm 5.6 ( [86]). The outline of a projected fast gradient method is as follows:

Algorithm 5.6 Simplified fast projected gradient algorithm [23].

Given a starting point x0 ∈ dom f , β ∈ (0, 1), y0 = x0 and q = µ
L

repeat until stopping criterion is satisfied

1. Compute βk ∈ (0, 1) from β2
k+1 = (1− βk+1)β

2
k + qβk+1.

2. Set θk : θk =
βk(1− βk)

βk+1 + β2
k

.

3. Compute yk+1 = xk+1 + θk(xk+1 − xk).

4. Compute possible Nesterov iterate xk+1 = yk − αk∇f(yk), with αk = 1
L
.

5. Obtain x̄k+1 = P(xk+1).

6. Compute projected gradient, ∆̄xk = x̄k+1 − xk.

7. Compute xck+1 : xck+1 = xk + ρk∆̄xk, ρk satisfies Armijo condition.

8. Update xk+1 : xk+1 = xck+1, No improvement step.

end (repeat)

5.4 Summary

This chapter has presented a detailed description of some optimization approaches that

can be applied to the implementation of online-optimizing anti-windup schemes. In

particular, the fast gradient method has been noted to be more suitable in this regard.

In Chapter 7, the efficiency of fast gradient methods of [23] are further improved using

the secant properties of convex functions. The work in Chapter 8 improves on the fast

gradient methods of [26, 109] by using nonmonontonic discrete Lyapunov functions.
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Chapter 6

Algorithmic Analysis

This chapter provides the mathematical tools that are used in analyzing the convergence

behaviour and numerical results of the algorithmic contributions presented in Chapter 7

and Chapter 8.

An algorithm is a set of ordered well-defined instructions for solving an instance

of a class of problems in a finite number of steps. Algorithmic analysis is a tool that

explains how an algorithm behaves from its initialization stage to its termination stage.

Algorithm analysis provides theoretical estimates for the resources needed by an al-

gorithm for solving a given computational problem. Moreover, these estimates provide

an insight into reasonable directions of improving the efficiency of the considered al-

gorithm. Algorithmic analysis serve as a tool for predicting performance, classifying

and comparing algorithms.

In theoretical analysis of algorithms, it is common to estimate their complexity in the

asymptotic sense i.e. for arbitrarily large input. Furthermore, in asymptotic algorithmic

analysis, worst-case complexity certificates are preferred because they guarantee that

the algorithm will never take more than this time [110]. Such guarantees can be quite

important in time-critical applications such as missile and aircraft guidance systems,

air-traffic control and control of a nuclear power plant. In addition, the worst-case

running time of an algorithm is often found to occur frequently in practical applications.

Notations such as the Big Oh notation are used to this end, to describe worst-case
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asymptotic complexities of algorithms.

The Big Oh notation is presented in Section 6.1 while classification of algorithmic

performance based on convergence measures, complexity measures and performance

profiles are discussed in Section 6.2.

6.1 The Big Oh (O) Notation

The big Oh (O) notation characterizes functions according to their growth/decay rates

and is thus useful for characterizing the effectiveness of algorithms.

Definition 6.1 ( [111]). Let f(k) and g(k) be two functions on some subset of real

numbers. Then

f(k) ∈ O(g(k)) as k →∞ (6.1)

if and only if there is a positive constant M such that

‖f(k)‖ ≤ M‖g(k)‖ for all k > ko. (6.2)

6.2 Algorithmic Performance

Algorithmic performance of a solver S on problem P is the total amount of computa-

tional effort, which is required by the solver S to solve the problem P . Algorithmic

performance can be classified based on

1. Convergence measures

2. Complexity measures

(a) space-complexity

(b) time-complexity

(c) oracle-complexity

3. Performance profiles
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6.2.1 Convergence Measures

Iterative methods create a sequence {xk}k≥0
⊂ Rn that converge to some desired point

x∗ (often the local minimizer). The fundamental question is how fast is this convergence?

Definition 6.2. Given a sequence {xk}k≥0
. If for any ǫ > 0 there exists an N such that

‖xk − x∗‖ < ǫ for all k > N, then the sequence {xk}k≥0
converges to a limit point x∗.

Given a sequence {xk}k≥0
→ x∗. Define the error ek = ‖xk − x∗‖ in a suitable norm.

The task then becomes one of measuring the convergence properties of the positive

sequence {ek}k≥0
.

• Q-convergence measure [112–114] : Assume that for some α, the condition

lim
k→∞

ek+1

eαk
= µ, where µ ≥ 0, (6.3)

is satisfied. Then the order of convergence of {ek}k≥0
is α and the limit value µ is

the rate of convergence or asymptotic constant. Larger values of α, and smaller

values of µ for a given α, corresponds to faster convergence.

– If α = 1 and 0 < µ < 1, then the sequence {ek}k≥0
converges linearly.

– If α = 1 and µ = 1 and the sequence is known to converge (since µ = 1 does

not tell us if it converges or diverges), then the sequence {ek}k≥0
is said to

converge sublinearly i.e. α < 1. If in addition

lim
k→∞

ek+2

ek+1
= 1, (6.4)

then the sequence converges logarithmically.

– If α = 1 and µ = 0 OR α = 1 and µ = µk : lim
k→∞

µk = 0, then the sequence

converges superlinearly i.e. 1 < α < 2.

– If α = 2, the sequence has a quadratic convergence.

– If α = 3, the sequence has a cubic convergence.
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• R-convergence measure: The order/rate scale is sometimes not sufficiently fine to

differentiate between sequences. The R-convergence measure captures sequences

that possess variable speed of convergence. The R-convergence measure is a

weaker notion than the Q-convergence measure and thus useful for characterizing

the behaviour of sequences that possess variable speed of convergence.

Definition 6.3 ( [111]). Suppose {ζk}k≥0
is a sequence known to converge to

0 with an order of α and a rate of µ in the sense of (6.3). Then the positive

sequence {ek}k≥0
has an order of at least α and a rate of at most µ if there exists

a nonnegative constant M such that

ek ≤ Mζk for all k. (6.5)

Using the big Oh notation, inequality (6.5) can then be written as

ek ∈ O(ζk). (6.6)

Even though Definition 6.3 permits {ζk}k≥0
to be an arbitrary sequence, usually

ζk is taken to be
1

kn
, for some n > 0. In essence, {ek}k≥0

does not decay worse

than { 1

kn
}
k≥0

and thus the sequence {xk}k≥0
converges to x∗ such that

xk = x∗ +O( 1

kn
). (6.7)

6.2.2 Complexity Measures

The total complexity of an optimization algorithms is amount of the computational

effort required to reach the optimal solution of a given problem. This depends on the

convergence rate of the optimization algorithm as well as the computational complexity

per iteration of the algorithm. As earlier noted on page 89, it is frequently important

to know how much of a particular resource (execution time and memory space) is the-

oretically required for a given algorithm. Methods have been developed to obtain such

92



quantitative answers (time-complexity and space-complexity) to be explicitly expressed

as a function of the problem size.

Space-Complexity Cost : This refers to the amount of memory locations utilized by

the algorithm to store variables or reference data (e.g. cache usage), in order for the

algorithm to reach the optimal solution of a given problem.

Time-Complexity Cost : Suppose a particular algorithm is composed of various compon-

ents, (e.g search direction updates, gradient evaluations), each of which has complexity

Ci and each component is executed Ri times. Then the total complexity cost, FT, of

using such an algorithm is given by

FT =
∑

i=1

Ci × Ri. (6.8)

Ri is the no of iterations required by each component before the optimal solution is

reached. An important parameter in determining Ci is the number of floating point

operations (flops). The flops refer to elementary mathematical operations of addition,

subtraction, multiplication and division of two floating-point numbers. The following

give examples of flops commonly encountered in optimization algorithms.

1. addition or subtraction or scalar multiplication of n-vectors : n flops.

2. inner product of two n-vectors : 2n− 1 flops.

3. outer product of an n-vector and m-vector : 2nm flops.

4. matrix-vector product with m× n - matrix A : m(2n− 1) flops.

The total-complexity cost, FT is independent of the machine on which the algorithm

is run. A more indicative measure of the time-complexity is the running-time (RT).

The run-time of the algorithm depends on the word-size, cache and main memory

sizes, processor and bus speeds of the machine platform on which the algorithm is

run [115, § 1.7]. Though the running-time (RT) is machine-dependent, it is still serve as

a very useful tool for comparative evaluation of algorithms if all the algorithms are run
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on the same machine, moreso if its implementation is single -threaded and sequential

computed on a single-CPU unit

Oracle-Complexity Cost [23] : The oracle O is an information unit, which answers

the successive questions of the algorithm. The three main types of oracle used in

optimization are

• Zero-order oracle: function value f(x),

• First-order oracle: function value f(x) and gradient ∇f(x),

• Second-order oracle: function value f(x), gradient ∇f(x) and Hessian ∇2f(x).

The oracle-complexity cost is the number of calls to the oracle, which is required by the

solver S to solve the problem P with the accuracy ǫ > 0.

6.2.3 Performance Profiles

The interpretation and analysis of data generated by algorithms usually involve tables

displaying the performance of each solver on each problem for a set of metrics such as

CPU time, number of function evaluation, iteration counts. The performance profile

as introduced in [116] is used in evaluating and comparing the overall performance of

an optimization software over a set of problems. The performance profile for a solver

is the (cumulative) distribution function of a performance metric. This thesis uses this

concept of performance profiling to evaluate and compare the performance of a set of

solvers S on a problem set P . Assume there are ns solvers and np problems, and the

computation run-time is to be used as the performance metric. For each problem p

and solver s, define

tp,s = computing time required to solve problem p by solver s. (6.9)

The performance ratio compares the performance on a problem p ∈ P by solver s ∈ S
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to the best performance by any solver on this problem.

rp,s =
tp,s

mintp,s : s ∈ S
. (6.10)

Thus the performance ratio rp,s ∈ [1, rM ], where rM ≥ rp,s is for all p, s. This per-

formance ratio rp,s is indicative of how slow a solver performs on a given problem.

Subsequently, we define the performance profile which is indicative of the overall assess-

ment of the performance of a solver s ∈ S on a set of problems P .

Definition 6.4 ( [116]). The performance profile ps(τ) : R 7→ [0, 1] is a continuous

nondecreasing piecewise-constant function which denotes the (cumulative) distribution

function of the performance ratio of a solver s ∈ S on a set of problems P. It is given

by

ps(τ) =
1

np
size {p ∈ P : rp,s ≤ τ} . (6.11)

ps(τ) is the probability for a solver s ∈ S that a performance ratio rp,s is within a factor

τ ∈ R of the best possible ratio. This alternatively means that a point (τ, ps(τ)) in

the performance profile of a solver can solve 100 ps(τ)% of the tested problems τ times

slower than the best competing solver. As a result of this convention, ps(rM ) = 1 and

in addition ps(1) of a particular solver is the probability that the solver will win over all

the others. At any given τ , the sum of ps(τ) may be greater than 1 because more than

one solver may have a performance ratio within τ multiples of the best possible ratio.

It is shown in [116], that the performance profile ps(τ) is relatively insensitive to small

changes in the performance data used for analysis and a very useful tool for comparing

how different solvers perform relative to one another.

6.3 Examples of Algorithm Analytics

In this section, the above discussed analysis tools are used to characterize the algorithmic

performance of the steepest descent method and Nesterov gradient method. Consider
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the minimization problem of a convex quadratic function (CQ1)

CQ1 : min
x∈Rn

f(x) :
1

2
xTHx+ cTx, (6.12)

with positive-definite H ∈ Rn×n, c ∈ Rn×1 and where µ and L correspond to the

minimum and maximum eigenvalue of H. The condition number of H is then, q = L
µ
.

Algorithm analysis of steepest descent method

(a.) Time-Complexity Cost

Here, the total algorithmic time-complexity of steepest descent method is obtained for

the unconstrained optimization problem CQ1. It can be shown that the gradient method

for CQ1 converges with O(ρk) [23]. For a given starting point x0 ∈ dom f , the gradient

method terminates with

ek = fk − f∗ ≤ Mρk, where M =
L
2
‖x0 − x∗‖22 and ρ = (

q − 1

q + 1
)2.

Now, we need to find the number of iterations to reach ǫ-suboptimal solution. The

phrase ǫ-suboptimal solution means that, the solution x̂ is such that f(x̂) is within a

distance of at most ǫ from the optimal solution f(x∗) i.e. ‖f(x̂)−f(x∗)‖ ≤ ǫ, where ǫ > 0.

Suppose solution x̂ is not within ǫ-suboptimality, then ǫ < ‖f(x̂)−f(x∗)‖ holds. Hence,

ǫ < f(x̂)− f(x∗) ≤ Mρk . (6.13)

Using the power inequality ex ≥ 1 + x in (6.13) , we then have that,

ǫ < f(x̂)− f(x∗) ≤ Me
−( 2

q+1
)2k

. (6.14)

It follows from (6.14) that,

k ≤ q

4
( log(1/ǫ) + logM ) ≤ q

4
log(1/ǫ) . (6.15)

Thus, the steepest descent method attains ǫ-suboptimality in O(q log(1/ǫ)) iterations..

Each iteration of the steepest descent method (see pp. 76) has complexities Ci as given
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below:

dk = ∇f(xk) = c−Hxk. n(2n− 1) + n flops (6.16)

αk =
dTk dk

dTkHdk
. n(2n− 1) + 2(2n− 1) flops (6.17)

xk+1 = xk + αkdk. 2n flops (6.18)

The main computational burden is dominated by the matrix-vector multiplication and

as a whole the gradient method has a complexity of O(n2) per iteration. Therefore, the

total complexity, FT, in obtaining an ǫ-approximation to the optimal solution of CQ1

is O(q log(1/ǫ)n2).

(b.) Space-Complexity Cost

The steepest descent algorithm needs to store the present iterate xk, present search

direction, dk and the present scalar step-size αk at any given time. Ignoring the inter-

mediate variables required to obtain dk, the steepest descent method therefore needs

2n+ 1 memory locations for implementation.

Algorithm analysis of Nesterov gradient method

(a.) Time-Complexity Cost

Here, the total algorithmic time-complexity of steepest descent method is obtained

for the unconstrained optimization problem CQ1. It can be shown that the gradient

method for CQ1 converges with O(ρk) [23]. For a given starting point x0, y0 ∈ dom f ,

the Nesterov gradient method terminates with

ek = fk − f∗ ≤ Mρk, where M = f(x0)− f(x∗) +
γ0
2
‖x∗ − x0‖2 and ρ = (

√
q − 1
√
q

).

Similarly using the power inequality ex ≥ 1 + x, it then follows that the Nesterov

gradient method attains ǫ-suboptimality in O(√q log(1/ǫ)) iterations. Each iteration of

the Nesterov gradient method (see 108, βk =
√
µ/L) has complexities Ci as follows,

xk+1 = yk −
1

L
∇f(yk). n(2n− 1) + n+ 2n flops (6.19)

yk+1 = xk+1 +

√
q − 1
√
q + 1

(xk+1 − xk) . n+ 2n flops (6.20)
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Thus, the Nesterov gradient method has a complexity of O(n2) per iteration. Therefore,

the total complexity, FT, in obtaining an ǫ-approximation to the optimal solution of

CQ1 is O(√q log(1/ǫ)n2).

(b.) Space-Complexity Cost

The Nesterov gradient method needs to store the present iterate yk, present gradient

vector, ∇f(yk), present iterate xk, next iterate xk+1, and the scalar step-size 1/L at any

given time. Ignoring the intermediate variables required to obtain ∇f(yk), the Nesterov

gradient method therefore needs 4n+ 1 memory locations for implementation.

6.4 Summary

This chapter has briefly discussed how the performance of an algorithm can be classified

based on convergence measures, complexity measures and performance profiling. Some

of these presented performance-indices are used in analyzing the algorithmic contribu-

tions presented in Chapter 7 and Chapter 8.
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Chapter 7

A Secant-Based

Nesterov Gradient Method

7.1 Introduction

This chapter considers the unconstrained optimization of convex function f :

UOP : min
x∈Rn

f(x) (7.1)

where f : Rn → R is a continuous and differentiable convex function. The domain of f ,

dom f , is the convex set Rn and x is a real vector. A necessary and sufficient condition

for a point x∗ to be a minimizer of f is ∇f(x∗) = 0 [85]. Furthermore, if f is bounded

below, then there exists a unique x∗ : f(x∗) = f∗ with f∗ ≤ f(x) ∀ x ∈ Rn [86].

The idea of enhancing or accelerating gradient methods directly has been intens-

ively researched [20,22,23,117–119] since the pioneering works of Shah et. al. [120] and

Polyak [121]. Accelerated gradient methods are easy to implement and offer much lower

memory requirement as compared to higher-order methods such as Newton’s method.

Accelerated gradient methods rely only on the local gradient and a history of past it-

erates when computing future ones. Accelerated gradient schemes can be thought of

as momentum methods, in that the step taken at the current iteration depends on the
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previous iterations, where the momentum grows from one iteration to the next [25].

Accelerated gradient methods, unlike gradient-descent methods, are not guaranteed

to monotonically decrease the objective value. In other words, accelerated gradient

methods are nonmonotone gradient methods that utilize the momentum from

the previous iterates.

Particular schemes include the Barzilai-Bowein gradient method [109], the back-

propagation method with momentum [122,123] - a well-known algorithm in the neural

network community - and a fast gradient method developed by Nesterov [23]. All the

aforementioned accelerated gradient methods use only the previous iterate and as such

they can be considered special cases of two-step iterative algorithms,

xk+1 = xk − αk∇f(yk) + ηk(xk − xk−1) : αk , ηk > 0 ; yk =
i=k∑

i=0

τixi , τi ∈ R,

with appropriate choice of αk, ηk and yk. The nonmonotonicity of the accelerated gradi-

ent methods is beneficial and contribute to their increased convergence rate [35,124,125].

However they are susceptible to severe ripplings or bumps in the objective values that

may be detrimental and lead to wasted iterations as noted in [25]. This is the case

in the Nesterov gradient method when the momentum factor has exceeded a critical

value. This can happen when the condition number (i.e. q−1 = L
µ
, where L, µ are

as defined in Section 7.2) is underestimated [25]. Moreover, accelerating the gradient

method with the precise q in a well-conditioned region can also lead to wasted itera-

tions [25]. The Lipschitz constant L can be estimated in a straightforward manner us-

ing backtracking (e.g. [126, pg. 162-163], [127, pg. 195]); however obtaining a nontrivial

lower bound for the strong-convexity parameter µ is much more challenging. In [128],

a backtracking approach is taken to estimate a nontrivial strong-convexity parameter.

The use of fixed restart proportional to the condition number has also been considered

(see [127, 129, 130]). A heuristic adaptive restart technique was recently introduced

in [25] based on the idea of restarting the momentum factor to zero when a heuristic

gradient condition is satisfied. The origin of momentum restart can in fact be traced
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back to the late 80’s (see e.g [131]). O’Donoghue and Candes [25] demonstrated dra-

matic speed up in the convergence rate of accelerated gradient methods by adaptively

restarting the momentum factor with zero when a heuristic gradient condition is satis-

fied. They show that their restart scheme recovers the optimal complexity O(√q In 1
ǫ
)

for strongly-convex quadratic functions. A significant improved performance of accel-

erated gradient methods combined with this heuristic adaptive restart of [25] has also

been reported in [132–134].

This chapter provides a theoretical justification for the heuristic restart condition

of [25] by extending the Nesterov gradient method to utilize available secant inform-

ation. The proposed algorithm (Secant-Based-NGM ) is based on updating the

estimate-sequence parameter with secant information whenever possible. Furthermore,

the proposed Secant-Based-NGM embodies an "update rule with reset" that paral-

lels the restart rule suggested in [25].

The rest of this chapter is organized as follows: In sections 7.3 and 7.4, the Nes-

terov gradient method and the quasi-Newton method are discussed. The proposed

Secant-Based-NGM is described in section 7.5. The global convergence for all con-

vex functions will also be established in section 7.5 and numerical results are reported

in section 7.6.

7.2 Notation

The function f denotes a continuous and differentiable convex function f : Rn → R.

The optimal values of f(x) and Φk(x) are denoted by f∗ and Φ∗
k respectively. ∇ denotes

the gradient operator and it is defined by ∇f(x) =
[df(x)
dx1

, · · · , df(x)
dxn

]T
. A differenti-

able function f : Rn → R has a Lipschitz continuous gradient on Rn with constant L

if there exist a constant L > 0 such that ‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖, ∀x, y ∈ R
n.

A continuously differentiable function f : Rn → R is convex with parameter µ if there

exists a constant µ ≥ 0 such that f(x) ≥ f(y)+∇f(y)(x−y)+µ

2
‖x−y‖2, ∀x, y ∈ R

n. If

µ > 0, then the continuously differentiable function f is strongly-convex. Subsequently,
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the term trivial convexity parameter means a lower bound of convexity parameter while

nontrivial convexity parameter refers to the greatest lower bound of the convexity para-

meter. Denote F i,p
L (Rn) as the class of convex functions that are at least i times con-

tinuously differentiable on Rn and the pth derivative is Lipschitz continuous on Rn with

the constant L. Let S1,1µ,L(R
n) be the class of convex functions with strong-convexity

parameter µ and Lipschitz continuous gradient L, i.e. Si,pµ,L(R
n) ⊆ Fk,p

L (Rn).

Assumption 7.1. A trivial convexity parameter µ ≥ 0 and the gradient’s Lipschitz

constant L are known.

7.3 Nesterov Gradient Method

This section reviews the fast gradient method due to Nesterov [23]. Consider the fol-

lowing approximations of f(x) at xk:

φ1
k(x) = f(xk) +∇f(xk)T (x− xk) +

1

2α
‖x− xk‖2. (7.2)

φ2
k(x) = f(xk) +∇f(xk)T (x− xk) +

1

2
(x− xk)

T∇2f(xk)(x− xk). (7.3)

The Nesterov gradient method [23] attempts to use approximations Φk(x) which are

better than φ1
k(x) but less expensive than φ2

k(x) by defining an estimate-sequence (see

Definition 7.1). Provided this estimate-sequence Φk(x) satisfies Nesterov’s Principle (see

below), then convergence to f∗ is guaranteed (see Lemma 7.1).

Definition 7.1 ( [23]). A pair of sequences {Φk(x)}∞k=0, {λk}∞k=0 is called an estimate-sequence

of a function f(x) if λk → 0 and for any x ∈ Rn and for all k ≥ 0, we have:

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x), (7.4)

where Φk(x) is some local function. �

The Nesterov gradient method is based on the principle of utilizing a sequence of local

functions Φk(x) whose limit approaches the greatest global lower bound of f(x).
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Nesterov’s Principle: This principle requires that the estimate-sequence (see Defini-

tion 7.1) defined by the local functions Φk(x) is constructed such that

f(xk) ≤ Φ∗
k, Φ∗

k = min
x

Φk(x) . �

(7.5)

As graphically illustrated in Fig. 7.1, Nesterov’s principle ensures that the local functions

Φk(x) constituting the estimate-sequence have a continuum of minima that approaches

the minimum of f(x) as λk → 0. This convergence property of Nesterov’s principle is

made precise in Lemma 7.1.

f(x)

Φk(x)

Φk+1(x)

f(x)

x

(a) Estimate sequence Φk(x) → f(x) as
λk → 0. See (7.4)

f(x)

Φk(x)

Φ∗

k

f (xk)

f(x)

xkvk x

(b) Imposed requirement on estimate
sequence Φk(x). See (7.5)

Figure 7.1: Nesterov’s optimal concept.
An illustration of Nesterov’s principle (f(xk) ≤ Φ∗

k
and Φk(x)→ f(x) as λk → 0).

Lemma 7.1 ( [23]). If a local function Φk(x) is chosen such that (7.4) and Nesterov’s

principle are both satisfied, then

f(xk)− f(x∗) ≤ λk[Φ0(x
∗)− f(x∗)], ∀k > 0. �

Thus, for any a scheme that satisfies Nesterov’s principle
[
i.e. (7.4), (7.5)

]
, the conver-

gence rate of its minimization process is directly related to the rate of convergence of

the λk sequence.

The following Lemma 7.2, gives a recursive rule that satisfies Definition 7.1.
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Lemma 7.2 ( [23]). Let scalars λ0 = 1, βk ∈ (0, 1),
∞∑
k=1

βk = ∞. The following

recursive rules,

λk+1 = (1− βk)λk , (7.6)

Φk+1(x) ≤ (1− βk)Φk(x) + βkf(x), (7.7)

are sufficient to constitute an estimate-sequence {Φk(x)}∞k=0, {λk}∞k=0 in the sense of

Definition 7.1. �

Remark 7.1. The conditions on βk ensures that the recursion is guaranteed to be finite.

The Nesterov scheme is one approach that ensures satisfaction of both Lemma 7.2

and Nesterov’s principle. The Nesterov scheme uses Lemma 7.2 to construct the

estimate-sequence defined in Lemma 7.3. Thereafter, the acceleration parameter βk

and search point yk are carefully chosen such that (7.5) is satisfied.

7.3.1 Nesterov’s choice of Recursive rule

Any chosen recursive rule for the local function Φk(x) must satisfy the requirements of

Lemma 7.2. In this section, the recursive rule of the local function Φk(x) used in the

Nesterov scheme is given and illustrated in Fig. 7.2.

Definition 7.2 ( [23]). Define Φk+1 (x) as

Φk+1 (x) = (1− βk)Φk(x) + βk[ f(yk) +∇f(yk)T (x− yk) +
µ

2
‖x− yk‖2 ] (7.8)

for a given sequence {yk}∞k=0. �

Remark 7.2. In particular, the choice Φk+1(x) =Φk+1 (x) obeys (7.7) and this corres-

ponds to Nesterov’s choice of recursive rule.

The next local function Φk+1(x) is then a convex combination of the previous local

function Φk(x) and the greatest global lower bound of f(x). Thus, Nesterov’s choice of

recursive rule is graphically illustrated in Fig. 7.2.
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f (yk) +∇f (yk)
T (x− yk) +

µ

2 ‖x− yk‖
2

f(xk)

f(yk)

f (x)

f (x)

ykxk x

Φk(x)

Φk+1(x)

Figure 7.2: Updating the local function Φk(x) for some yk.
The estimate sequence Φk+1(x) is obtained as a convex combination of Φk(x) and the global

lower bound of f(x) at yk. (see Remark 7.2).

7.3.2 Nesterov’s choice of estimate-sequence

A simple quadratic form is chosen as the initial local function Φ0(x). This choice allows

the requirements of Lemma 7.2 to be satisfied easily. Thus the recursion of the sequences

defined in Lemma 7.3 defines an estimate-sequence that satisfies Definition 7.1.

Lemma 7.3 ( [23]). Let scalars βk ∈ (0, 1), γk > 0, µ ≥ 0, and vk, yk ∈ Rn. Let

Φ0(x) = Φ∗
0 +

γ0
2 ‖x− v0‖2. The recursive rules in Lemma 7.2

[
i.e. (7.6), (7.7)

]
hold for

Φk(x) = Φ∗
k +

γk
2
‖x− vk‖2 (7.9)

provided the sequences {γk, vk,Φ∗
k}∞k=0 are defined as

γk+1 = (1− βk)γk + βkµ , (7.10)

vk+1 =
1

γk+1
[(1− βk)γkvk + βkµyk − αk∇f(yk)] , (7.11)

Φ∗
k+1 = (1− βk)Φ

∗
k + βkf(yk)−

β2
k

2γk+1
‖∇f(yk)‖2+

βk(1− βk)γk
γk+1

[
µ

2
‖yk − vk‖2 +∇f(yk)T (vk − yk) ] . (7.12)

The variables βk and γk shall subsequently be referred to as the acceleration parameter
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and estimate-sequence parameter respectively. Now, one has the estimate-sequence as

desired but still the local condition (7.5) at the next iterate, f(xk+1) ≤ Φ∗
k+1, needs to be

ensured. This is subsequently achieved in §7.3.3 by carefully choosing the accelerating

parameter βk and the search point yk such that (7.5) is satisfied.

7.3.3 Nesterov’s choice of βk and search point yk

Suppose that f(xk) ≤ Φ∗
k. Denote ζ(βk) =

[
f(xk) − f(yk) +

βkγk
γk+1

[
µ

2
‖yk − vk‖2 +

∇f(yk)T (vk − yk) ]
]
. Then Φ∗

k+1 (7.12) can be written as

Φ∗
k+1 = f(yk)−

β2
k

2γk+1
‖∇f(yk)‖2 + (1− βk)ζ(βk). (7.13)

Hence, the choice of yk and βk that satisfies Nesterov’s Principle ( i.e Lemma 7.3 and

f(xk+1) ≤ Φ∗
k+1 ) are obtained as follows:

Take xk+1 = yk − αk∇f(yk), αk = 1
L
. Then, we have f(xk+1) ≤ f(yk)− 1

2L‖∇f(yk)‖2.

It then follows that (7.13) reduces to

Φ∗
k+1 ≥ f(xk+1) +

1

2L
‖∇f(yk)‖2 −

β2
k

2γk+1
‖∇f(yk)‖2 + (1− βk)ζ(βk). (7.14)

Hence, to satisfy f(xk+1) ≤ Φ∗
k+1, we choose yk as

yk =
βkγkvk + γk+1xk

γk + βkµ
: ζ(βk) =

[βkγk
γk+1

[
µ

2
‖yk − vk‖2]

]
(7.15)

and compute βk:

β2
kL = γk+1 = (1− βk)γk + βkµ. (7.16)

Remark 7.3. The search point yk (7.15) can be written as

yk = xk − ρk∇Φk(x), ρk =
βk

γk + βkµ
, ∇Φk(x) = γk(xk − vk). (7.17)

The Nesterov scheme is graphically illustrated as shown below in Fig. 7.3.

106



f (x)
Φk+1(x)

f (yk) +∇f (yk)
T (x− yk) +

µ

2 ‖x− yk‖
2

( vk+1, Φ
∗

k+1 )

xk xk+1

f (x)

f(xk+1)

Φ
∗

k+1

x

yk : equation 7.16

yk

xk+1 : xk+1 = yk −
1
L
∇f(yk)

f (yk) +∇f (yk)
T (x− yk)

Figure 7.3: Ensuring local condition (7.5) at the next iterate, f(xk+1) ≤ Φ∗
k+1(x).

After obtaining Φk+1(x) as shown in Fig. 7.2, the choice of βk, yk and xk+1 ensures (7.5).

Algorithm 7.1a ( [23]). The basic Nesterov gradient method is outlined as follows:

Algorithm 7.1a Basic Nesterov gradient method.

Given a starting point x0 ∈ dom f , γ0 > 0 and v0 = x0.

repeat until stopping criterion is satisfied

1. Compute βk ∈ (0, 1) from β2
kL = (1− βk)γk + βkµ . (7.16)

2. Compute γk+1 : γk+1 = (1− βk)γk + βkµ . (7.10)

3. Compute search point: yk = xk − ρkγk(xk − vk). (7.17)

4. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk), with αk = 1
L
.

5. Compute vk+1 : vk+1 =
1

γk+1
[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (7.11)

end (repeat)

Algorithm 7.1a can be simplified by eliminating variables vk and γk. With this elim-

ination of vk+1 and γk+1 , Algorithm 7.1a simplifies to Algorithm 7.1b.
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Algorithm 7.1b ( [23]). The simplified Nesterov gradient method is outlined as follows:

Algorithm 7.1b Simplified Nesterov gradient method.

Given a starting point x0 ∈ dom f , β0 ∈ (0, 1), y0 = x0 and q = µ
L
.

repeat until stopping criterion is satisfied

1. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk), with αk = 1
L
.

2. Compute βk+1 ∈ (0, 1) from β2
k+1 = (1− βk+1)β

2
k + qβk+1

3. Compute θk+1 : θk+1 =
βk(1− βk)

βk+1 + β2
k

.

4. Compute yk+1 = xk+1 + θk+1(xk+1 − xk) .

end (repeat)

Remark 7.4. The choice of β0 =

√
µ

L
corresponds to γ0 = µ while the corresponding

β0 for the case of γ0 = L can be obtained from (7.16). It is important to emphasize that

β0 6= 1 since (7.16) cannot hold when β0 = 1. Hence the choice β0 ∈ (0, 1). Were βk be

chosen as 0 for all k ≥ 0, Algorithm 7.1 would reduce to a fixed-step gradient-descent

method.

Theorem 7.1 ( [23]). Let Φ0(x) = Φ∗
0 +

γ0
2 ‖x − v0‖2. Suppose v0 = x0. If a scheme

satisfies Lemma 7.2 and Nesterov’s principle, then

f(xk)− f(x∗) ≤ λk

[
f(x0)− f(x∗) +

γ0
2
‖x− x0‖2

]
, ∀k > 0,

where λ0 = 1 and λk =
∏k−1

i=0 (1− βi). �

Remark 7.5. Take γ0 = L in Algorithm 7.1a ( or the corresponding β0 in Al-

gorithm 7.1b ). Let v0 = x0. Then the Nesterov scheme satisfies the premises of

Theorem 7.1. If γk > 0, then the Nesterov gradient method Algorithm 7.1 generates

108



a sequence {xk}∞k=0 such that

f(xk)− f∗ ≤ 4L
(k + 2)2

× ‖x0 − x∗‖2. (7.18)

Furthermore, if γk ≥ µ for all k, then

f(xk)− f∗ ≤ min
{

L(1−
√

µ

L
)k ,

4L
(k + 2)2

}
× ‖x0 − x∗‖2. (7.19)

7.4 Quasi-Newton Method

The NGM uses a Φk(x) as an inexpensive approximation to φ2
k(x) and imposes the

Nesterov’s principle for convergence. The quasi-Newton [86] method, on the other

hand, imposes a different requirement on the local quadratic model Ψk(x) about xk,

Ψk(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)

TBk(x− xk), (7.20)

where Bk is a Hessian-approximate. Lets define the point where Ψk(xk) = f(xk) and

f(x)

Ψk(x)

xxkxk+1

P
2

P
1

f(x)

Ψk(x)
Ψk+1(x)

Figure 7.4: Quasi-Newton method, showing secant line P1-P2.
Illustrating the secant line P1-P2, where P1 and P2 are defined below. The imposed

requirement on Bk+1 is that ∇Ψk+1(xk) = ∇f(xk).

∇Ψk(xk) = ∇f(xk) as point P1 (see Fig. 7.4). Suppose the new iterate xk+1 has been
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generated by minimizing Ψk(x) i.e.

xk+1 = xk + αkdk = xk −B−1
k ∇f(xk) = xk + sk. (7.21)

We wish to construct Ψk+1(x) of the form

Ψk+1(x) = f(xk+1) +∇f(xk+1)
T (x− xk+1) +

1

2
(x− xk+1)

TBk+1(x− xk+1). (7.22)

Similarly, define the point where Ψk+1(xk+1) = f(xk+1) and ∇Ψk+1(xk+1) = ∇f(xk+1)

as P2 (see Fig. 7.4). Requirements can be imposed on Bk+1 based on our knowledge

of the previous step. Provided the Hessian does not vary significantly, it is reasonable

to expect that in addition to ∇Ψk+1(xk+1) = ∇f(xk+1), that it is desired to have

∇Ψk+1(xk) = ∇f(xk). Therefore, it follows that

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk). (7.23)

This imposed condition (7.23) is known as the secant condition and can be written as:

Bk+1sk = yk. (7.24)

Alternatively, the secant condition can be derived from the mean-value theorem for

vector-valued functions which implies that (7.24) is satisfied by the mean Hessian in the

interval (xk xk+1) [27]. The pair (sk, yk) is said to be the secant pair associated with the

secant condition (7.24). The matrix Bk is updated ( see [86] ) using symmetric rank-one

updates (SR1) or symmetric rank-two updates (e.g Powell-Symmetric-Broyden(PSB)

and Davidon-Flectcher-Powell(DFP) updates).

7.5 A Secant-Based Nesterov Gradient Method

In this section, a new accelerated gradient method (Secant-Based-NGM ) is pro-

posed by extending the classical Nesterov gradient method to utilize available secant

information whenever possible. The Secant-Based-NGM is based on updating the
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estimate-sequence parameter γk by imposing a secant condition on the choice of search

point yk. The global convergence of the proposed Secant-Based-NGM is also estab-

lished for all convex functions.

7.5.1 Recursive Rule Revisited

Recall from Lemma 7.2 that the recursive rule for Φk(x) must satisfy,

Φk+1(x) ≤ (1− βk)Φk(x) + βkf(x). (7.25)

Also recall from Definition 7.2 that

Φk+1 (x) = (1− βk)Φk(x) + βk[ f(yk) +∇f(yk)T (x− yk) +
µ

2
‖x− yk‖2 ] (7.26)

Definition 7.3. Let lk(x) : lk(x) = f(yk)+∇f(yk)T (x−yk)+
µk

2
‖x−yk‖2 for a given

sequence {yk}∞k=0 with µk ∈ (0, µ].

Subsequently, we do not explore the flexibility in µk and take that µk = µ. Therefore,

the equality (7.26) can be written as

Φk+1 (x) = (1− βk)Φk(x) + βklk(x). (7.27)

Thus, Nesterov’s choice of recursive rule (see Remark 7.2) corresponds to Φk+1(x) =Φk+1 (x).

In the case µ 6= 0, it then follows from (7.27) that

Φk+1(x) = (1− βk)
[
Φ∗
k +

γk
2
‖x− vk‖2

]
+ βk

[
l∗k +

µ

2
‖x− zk‖2

]
, (7.28)

where zk = yk − 1
u
∇f(yk) , l∗k = f(yk)− 1

2µ‖∇f(yk)‖2.

Furthermore, the proposed algorithm chooses Φk+1(x) ≤ Φk+1 (x) such that,

Φk+1(x) ≤ (1− βk)Φk(x) + βk[ f(yk) +∇f(yk)T (x− yk) +
µ

2
‖x− yk‖2 ]. (7.29)
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7.5.2 Construction of Secant-Based-NGM

The Secant-Based-NGM scheme extends the classical Nesterov scheme by utilizing

secant information in updating the estimate-sequence parameter γk. The subsequent

two lemmas are used to arrive at an inequality (7.37) that gives an upper bound to γk.

Lemma 7.4. Given a, b > 0 and x1, x2 ∈ Rn, there exists x3 ∈ Rn and d ≥ 0 such

that a‖x− x1‖2 + b‖x− x2‖2 = (a+ b)‖x− x3‖2 + d for all x ∈ Rn.

Proof :

Take

x3 =
ax1 + bx2

a+ b
and d =

ab(x1 − x2)
T (x1 − x2)

a+ b
. (7.30)

It then follows that

a‖x− x1‖2 + b‖x− x2‖2 = (a+ b)‖x− x3‖2 + d. (7.31)

Hence, d = 0 if and only if x1 = x2. Thus d ≥ 0 if a, b > 0. �

Lemma 7.5. Given a, b > 0 and x1, x2 ∈ Rn, there exists x3 ∈ Rn and d̂ ∈ R such

that a‖x− x1‖2 + bxT2 x = a‖x− x3‖2 + d̂ for all x ∈ Rn.

Proof :

Take

x3 =
2ax1 − bx2

2a
and d̂ =

4abxT1 x2 − bxT2 x2
4a2

. (7.32)

It then follows that a‖x− x1‖2 + bxT2 x = a‖x− x3‖2 + d̂, where d̂ ∈ R if a, b > 0. �

The subsequent Lemma 7.6 gives the needed freedom in updating the γk sequence and

also gives the upper bound to the acceptable value of γk.

Lemma 7.6. Let scalars βk ∈ (0, 1), γk > 0, µ ≥ 0, and vk, yk ∈ Rn. Let Φ0(x) =

Φ∗
0 +

γ0
2 ‖x− vk‖2. The recursive rules in Lemma 7.2

[
i.e. (7.6), (7.7)

]
hold for

Φk(x) = Φ∗
k +

γk
2
‖x− vk‖2 (7.33)
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provided the sequences {γk, vk,Φ∗
k}∞k=0 are defined as

γFk+1 = (1− βk)γk + βkµ , (7.34)

vk+1 =
1

γFk+1

[(1− βk)γkvk + βkµyk − αk∇f(yk)] , (7.35)

Φ∗
k+1 = (1− βk)Φ

∗
k + βkf(yk)−

β2
k

2γFk+1

‖∇f(yk)‖2+

βk(1− βk)γk
γFk+1

[
µ

2
‖yk − vk‖2 +∇f(yk)T (vk − yk) ] , (7.36)

γk+1 ≤ γFk+1 . (7.37)

Proof :

Given that Φk(x) = Φ∗
k +

γk
2
‖x − vk‖2. Define γFk+1 = (1− βk)γk + βkµ. From (7.27),

Φk+1 (x) is defined as Φk+1 (x) = (1− βk)Φk(x) + βklk(x). Furthermore, choose vk+1 as

the unconstrained minimum of Φk+1 (x). Thus,

vk+1 =
1

γFk+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (7.38)

Moreover by virtue of Lemma 7.4, it follows from (7.28) that Φk+1 (x) = (1− βk)Φ
∗
k +

βkl
∗
k +

γFk+1

2
‖x− vk+1‖2 + d for some d ≥ 0. The case of d = 0 occurs if and only if we

have coincident minimizers i.e vk+1 = vk = zk ( see [119] ).

Nesterov’s choice corresponds to Φk+1(x) = Φk+1 (x) with γk+1 = γFk+1. However, we

choose

γk+1 ≤ γFk+1 . (7.39)

We then have Φk+1(x) ≤ Φk+1 (x) which still satisfies (7.25) and more importantly

Φk+1(vk+1) = Φk+1 (vk+1) also as a consequence of Lemma 7.4. This inequality (7.39)

still holds for the case of µ = 0 using similar arguments in conjunction with Lemma 7.5.

This inequality (7.39) is crucial in the sense that it gives an upper bound to γk for all

k and allows the use of the secant information in updating the γk sequence whenever
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possible.

Let us compute Φ∗
k+1 as follows. It follows from (7.33) that at x = vk+1, we have that

Φ∗
k+1 = Φk+1(vk+1). Since Φk+1(vk+1) = Φk+1 (vk+1), then by (7.27) it then follows

that Φ∗
k+1 can be computed as

Φ∗
k+1 = (1− βk)Φk(vk+1) + βk lk(vk+1) . (7.40)

Substitute for Φk(vk+1) in (7.40) using (7.33), then (7.40) becomes

Φ∗
k+1 = (1− βk)Φ

∗
k +

(1− βk)γk
2

‖vk+1 − vk‖2+

βkf(yk) + βk∇f(yk)(vk+1 − yk) +
βkµ

2
‖vk+1 − yk‖2 . (7.41)

It follows from (7.38) that

vk+1 − yk =
γk
γFk+1

(1− βk)(vk − yk)−
βk
γFk+1

∇f(yk) , (7.42)

and that

vk+1 − vk =
βkµ

γFk+1

(yk − vk)−
βk
γFk+1

∇f(yk). (7.43)

Substituting (7.42) and (7.43) into (7.41), then the result for Φ∗
k+1 follows,

Φ∗
k+1 = (1− βk)Φ

∗
k + βkf(yk)−

β2
k

2γFk+1

‖∇f(yk)‖2+

βk(1− βk)γk
γFk+1

[
µ

2
‖yk − vk‖2 +∇f(yk)T (vk − yk) ] . � (7.44)

Remark 7.6. Lemma 7.3 is a special case of Lemma 7.6 if γk+1 is chosen as γk+1 = γFk+1.

The secant information is used in updating γk by requiring that ∇Φk+1(yk) = ∇f(yk).

It then follows that γ̂k+1(yk − vk+1) = ∇f(yk) where γ̂k+1 is a possible update of γk.

Using a symmetric rank-1 update, it then follows that :
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γ̂k+1 =
∇f(yk)(yk − vk+1)

(yk − vk+1)T (yk − vk+1)
. (7.45)

Updating γk with (7.45) (i.e γk+1 = γ̂k+1) ensures that the computed search point

yk (7.17) utilizes available secant information at the kth iterate. However, this updating

is subject to the constraint (7.37). This computation of γ̂k+1 comes at an extra cost of

2 vector-vector multiplication. However, as shown in the simulation results, the benefits

of computing γk+1 outweigh the extra cost of its computation. Thus, the update γk+1

can be appended to the classical Nesterov gradient method in a straight-forward manner

as shown below in step 6 of the Basic Secant-Based-NGM below.

Algorithm 7.2a (Basic Secant-Based-NGM). The outline is as follows:

Basic Secant-Based-NGM.

Given a starting point x0 ∈ dom f , γ0 > 0 , v0 = x0 , ǫ > 0 and ǫ ≈ 0

repeat until stopping criterion is satisfied

1. Compute βk ∈ (0, 1) from β2
kL = (1− βk)γk + βkµ .

2. Compute γFk+1 : γFk+1 = (1− βk)γk + βkµ . (7.34)

3. Compute search point: yk = xk − ρkγk(xk − vk).

4. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk), with αk = 1
L
.

5. Compute vk+1 : vk+1 =
1

γFk+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (7.45)

6. Compute γ̂k+1 : γ̂k+1 =
∇f(yk)(yk − vk+1)

(yk − vk+1)T (yk − vk+1)
. (7.35)

7. Compute γk+1 : γk+1 = m̂inµ ( γ̂k+1, γ
F
k+1 ) . · · · update rule

8. If γ̂k+1 < 0, then set γk+1 = min{max{ǫ, βkµ}, γFk+1 } . · · · reset rule

end (repeat)
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Remark 7.7. The m̂inµ operator rule in step 7 is given by

c = m̂inµ(a, b) :





c = min(a, b) if a > µ,

c = b if a < µ.

Remark 7.8. The reset rule in step 8 is equivalent to γk+1 = βkµ if µ 6= 0 and

γk+1 = min{ ǫ, γFk+1 } if otherwise.

Just as with the classical Nesterov gradient method, vk+1 = xk+1 +
1− βk
βk

(xk+1 − xk)

and the variable vk can therefore be eliminated. With this elimination of vk+1, the

Basic Secant-Based-NGM simplifies to the Simplified Secant-Based-NGM.

Algorithm 7.2b (Simplified Secant-Based-NGM). The outline is as follows:

Simplified Secant-Based-NGM.

Given a starting point x0 ∈ dom f , β0 ∈ (0, 1) , y0 = x0 , ǫ > 0 and ǫ ≈ 0

repeat until stopping criterion is satisfied

1. Compute Nesterov iterate: xk+1 = yk − αk∇f(yk), with αk = 1
L
.

2. Compute γFk+1 = β2
kL ; τk =

1− βk
βk

.

3. Compute yv = [αk∇f(yk)− τk(xk+1 − xk)] ; γ̂k+1 =
yTv ∇f(yk)

yTv yv
.

4. Compute γk+1 : γk+1 = m̂inµ ( γ̂k+1, γ
F
k+1 ) . · · · update rule

5. If γ̂k+1 < 0, then set γk+1 = min{max{ǫ, βkµ}, γFk+1 } . · · · reset rule

6. Compute βk+1 ∈ (0, 1) from β2
k+1L = γk+1 − βk+1(γk+1 − µ).

7. Compute θk+1 : θk+1 = ρk+1γk+1τk , where ρk+1 =
βk+1

γk+1 + βk+1µ
.

8. Compute yk+1 = xk+1 + θk+1(xk+1 − xk) .

end (repeat)
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In what follows, the gradient restart condition and restart rule of [25] is contrasted with

a gradient condition (7.46) and the proposed "update rule with reset" respectively. With

the substitution of vk+1 in the Basic Secant-Based-NGM, we can see that the reset

condition γk+1 < 0 in step 5 of the Simplified Secant-Based-NGM is equivalent to

αk‖∇f(yk)‖2 − τk∇f(yk)T (xk+1 − xk)) < 0. (7.46)

This gradient condition (7.46) is more conservative than the gradient-scheme restart

condition suggested in [25] especially when the iterates are far away from the optimum

point. Thus the gradient condition (7.46) is less frequently satisfied. The advantage of

the conservativeness of (7.46) is reinforced by the observation in [25] that "... restarting

far from the optimum can slow down the early convergence slightly, until the quadratic

region is reached and the algorithm enters the rapid linear convergence phase.".

The restart rule of [25] is given as

1. setting βk+1 as 1.

2. setting the momentum factor θk+1 as 0.

Firstly, it should be noted that the reset βk+1 should be in the interval (0, 1) since βk ∈

(0, 1) for all k ≥ 0 ( see Remark 7.4 ). Moreover, an arbitrary choice of βk+1 ∈ (0, 1) may

correspond to a γk+1 that violates the inequality γk+1 ≤ γFk+1 (7.39). Furthermore, the

proposed Simplified Secant-Based-NGM proceeds with the computed βk+1 unlike

the restart rule 1 of [25]. Also the proposed Simplified Secant-Based-NGM does

not reset the momentum factor to zero (i.e. θk+1 6= 0) unlike the restart rule 2 of [25].

Thus Secant-Based-NGM is not a momentum-restart algorithm, and the proposed

"update rule with reset" ( see Remarks 7.7, 7.8 ) in the Secant-Based-NGM satisfies

inequality (7.39).

7.5.3 Global Convergence of Proposed Scheme

The scheme construction of the proposed algorithm Secant-Based-NGM satisfies

Lemma 7.2 and Nesterov’s principle. Thus the proposed scheme satisfies the premises
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of Theorem 7.1 and therefore Secant-Based-NGM is globally convergent with

f(xk)− f(x∗) ≤
k−1∏

i=0

(1− βi)
[
f(x0)− f(x∗) +

γ0
2
‖x− x0‖2

]
, ∀k ≥ 1, (7.47)

where βi ∈ (0, 1) and γ0 > 0.

7.6 Simulation Examples

Consider two test examples of the form

UOP : min
x∈Rn

f(x), (7.48)

where x ∈ Rn. The numerical tests investigate the effects of increasing the dimension

and condition number respectively on the performance of the proposed algorithm.

7.6.1 Simulation Setup

All numerical tests were coded in 64-bit MATLAB on a Dell-Optilex-780 PC with Intel

dual-core CPU of 2.93 GHz, RAM of 16GB and a 150GB-free Hard-Disk. All Matlab

sessions were single-threaded, feature(’accel’,’off’) and process-Priority set to ”High”.

All Matlab sessions were executed on the PC running Windows 7 in "‘Safe Mode"’. The

stopping criterion was ‖∇f(x)‖ ≤ 10−9 and ‖∇f(x)‖ ≤ 10−6 for Ex. 1 and 2 respect-

ively. All matrices are square and random such that the Hessian has eigenvalues in the

interval [ 1, L ]. This was achieved using singular value decomposition to allocate the de-

sired eigenvalues. All matrices and vectors were randomly generated in MATLAB with

seed rng(1234,’twister’). The simulations were also repeated for seed rng(5678,’twister’).

In the case of Ex. 1, the average run-time of 100 random simulations is also reported.

7.6.2 Test Functions and Solvers

The test function in Ex. 1 is is a well-known convex quadratic function used for

benchmarking convex solvers while the test function in Ex. 2 is a convex non-quadratic
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function usually encountered in machine-learning literature. The set of solvers S

considered is

• Classical Nesterov gradient method(NGM)1,

• Adaptive restart [25],

• Fixed restart,2 after k =

√
8L
µ

• Proposed algorithm Simplified Secant-Based-NGM.

In all cases, β0 =
√

µ/L if µ 6= 0 and β0 =

√
5− 1

2
if otherwise. These chosen β0

corresponding to γ0 = µ and γ0 = L respectively. The value of ǫ in Simplified Secant-

Based-NGM is taken as 10−16.

The performance profile in the sense of Dolan and More [116] is adopted to analyze the

performance data of the above set of solvers S on a problem set P (e.g. Ex. 1). The

percentage of the test problems for which a method is the fastest is given on the left axis

of the plot. The right-hand side of the plot gives the percentage of the test problems

that were successfully solved by each of the methods. In essence, the right side of the

performance profile plot is a measure of an algorithm’s robustness.

7.6.3 Numerical Results

Ex. 1: Ridge regression problem [135]

This is a linear least squares problem with Tikhonov regularization. Given A ∈ Rm×n,

b ∈ Rn and µ = 0.1.

f(x) =
µ

2
‖x‖22 +

1

2
‖Ax− b‖22. (7.49)

The objective function f(x) ∈ S1,1µ,L is a positive-definite quadratic convex function with

Lipschitz gradient of L = λmax(A
TA) + µ and global convexity parameter of µ = 0.1.

All algorithms uses the global convexity parameter except algorithm NGM1 which used
1The simplified Nesterov gradient method Algorithm 7.1b is used for simulation.
2In the case of example 2 (µ = 0), fixed restart is done after k = min{N,

√
L} iterations.

119



a nontrivial convexity parameter of µ = 1.1.

The plots in Fig. 7.5(a) and Fig. 7.5(b) show the effect of increasing the problem size (N)

and condition number (L/µ) respectively. As expected the NGM with global convexity
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Figure 7.5: Effect of problem size (N) and condition number (L/µ) on the run-time.
NGM1 - NGM with nontrivial µ ; NGM2 - NGM with global µ.

parameter µ = 0.1 (NGM2) is slowest with the largest run-time (RT) as observed in

Fig. 7.5(a). Using a fixed restart shows slightly improved performance with increas-

ing dimension. However, the adaptive restart and Simplified Secant-Based-NGM

perform significantly better than NGM2 and perform comparable with NGM1 as the

dimension number increases. It can be noted in Fig. 7.5(b) that the adaptive restart

and Simplified Secant-Based-NGM perform better than even the NGM1. Moreso,

Simplified Secant-Based-NGM outperforms the adaptive restart as the condition

number becomes high.

The simulations were repeated for randomly-generated matrices and vectors with seed

rng(5678,’twister’). The plots in Fig. 7.6(a) and Fig. 7.6(b) show the effect of increasing

the problem size (N) and condition number (L/µ) respectively. Similar conclusions can
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Figure 7.6: Effect of problem size (N) and condition number (L/µ) on the run-time.
NGM1 - NGM with nontrivial µ ; NGM2 - NGM with global µ.

be drawn from the plots in Fig. 7.6(a) and Fig. 7.6(b). The performance profile [116] for

all problem instances
(

i.e. with seed rng(1234,’twister’) and seed rng(5678,’twister’)
)

is

shown in Fig. 7.7(a). It is clear from Fig. 7.7(a) that the NGM with nontrivial convexity
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Figure 7.7: The performance profiles of the set of solvers S for Ex. 1 and Ex. 2.

parameter has the most wins (i.e the highest probability of being the optimal solver).

However, it can also be observed from Fig. 7.7(a) that the performance of NGM with a

trivial convexity parameter is improved when a fixed restart or adaptive restart [25] is

used. Moreover, Simplified Secant-Based-NGM performs better than when restarts

are used with NGM. In general, the proposed Simplified Secant-Based-NGM has
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the highest probability
(
ps(τ)=0.9

)
of being the fastest solver within a factor τ = 1.5

of the best solver for that particular problem instance.

Due to the closeness of the run-times of some of the considered algorithms, some statist-

ical analysis is required to account for the inevitable variability in timing . However, the

statistical consideration is restricted to averaging the run-time over multiple-simulations.

Fig. 7.8(a) and Fig. 7.8(b) show the mean run-time of 100 random simulations with in-

creasing problem size (N) and condition number (L/µ) respectively.
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Figure 7.8: Effect of problem size (N) and condition number (L/µ) on the run-time.
NGM1 - NGM with nontrivial µ ; NGM2 - NGM with global µ.

Ex. 2: Binary classification problem [136,137]

This a logistic regression problem with l2-regularization. Given zi ∈ Rn, yi ∈ {−1, 1},

µ = 0 and N ≥ 1.

f(x) =
µ

2
‖x‖22 +

N∑

i=1

log(1 + e−yiz
T
i x). (7.50)

The objective function f(x) ∈ S1,1µ,L is a non-quadratic convex function with Lipschitz

gradient of L = 0.25λmax(F
TF ) and global convexity parameter of µ = 0, where F =

[z1 · · · zN]
T ∈ RN×n. The design matrix F T and the explained variable y = sign(wTF T )

were generated as described in [137,138] except that w = [1; 1; 1 · · · 1]. The choice of w
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means that each feature has an equal effect on the explained variable y.

The plots in Fig. 7.9(a) and Fig. 7.9(b) show the effect of increasing the problem

size (N) and condition number (L/µ) respectively. The simulations were repeated for
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Figure 7.9: Effect of problem size (N) and condition number (L/µ) on the run-time.

randomly-generated matrices and vectors with seed rng(5678,’twister’). The plots in

Fig. 7.10(a) and Fig. 7.10(b) show the effect of increasing the problem size (N) and

condition number (L/µ) respectively. Same conclusions can be drawn from the plots
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Figure 7.10: Effect of problem size (N) and condition number (L/µ) on the run-time.

in both Fig. 7.10(a) and Fig. 7.10(b). It can be observed in these figures that all the

123



algorithms have similar performance except for Simplified Secant-Based-NGM that

clearly outperforms the rest as the dimension number increases. In Fig. 7.10(b), the ad-

aptive restart performs worse than the NGM while the Simplified Secant-Based-NGM

clearly significantly outperforms all other algorithms as the condition number increases.

The performance profile [116] for all problem instances is shown in Fig. 7.7(b). It

is clear from Fig. 7.7(b) that Simplified Secant-Based-NGM is the most efficient

of the considered solvers. It solved 97% of the problems significantly faster than the

other solvers. It can also be observed from Fig. 7.7(b) that the performance of adaptive

restart [25] is worse than the fixed restart or the classical NGM. In general, the proposed

Simplified Secant-Based-NGM significantly improves over and above the classical

NGM and the adaptive restart suggested in [25].

7.7 Conclusion

The Nesterov gradient method needs to be restarted (e.g. [25, 130]) when a nontrivial

convexity parameter is not available. This chapter introduces a new secant-based Nes-

terov gradient method (Secant-Based-NGM ) and also establishes that it is globally

convergent for all convex functions. The algorithm only requires a trivial lower bound of

the convexity parameter µ ≥ 0 and the gradient’s Lipschitz constant L. The efficiency

of the proposed algorithm derives from updating the estimate-sequence parameter γk

by imposing a secant condition on the choice of search point yk. Furthermore, the pro-

posed Secant-Based-NGM embodies an "update rule with reset" that parallels the

restart rule suggested in [25]. The effectiveness of the proposed algorithm is confirmed

in numerical simulation of a few test functions with varying dimension and condition

number. The proposed Secant-Based-NGM significantly improves the adaptive re-

start suggested in [25] and the classical NGM. Furthermore, Chapter 8, presents two

new secant-based algorithms that exploit the discrete Lyapunov theorem to establish

their global convergence.
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Chapter 8

A Scaled Barzilai-Borwein Step-Size

8.1 Introduction

This chapter deals with unconstrained convex optimization from the control theory point

of view. In particular, this chapter explores another subcategory of first-order methods

called the Barzilai-Bowein gradient method. Let’s consider the following unconstrained

optimization of a general function f :

UOP : min
x∈Rn

f(x) (8.1)

where f : Rn → R is a continuous differentiable function. The domain of f , dom f , is

the convex set Rn. In general, we have the following subclasses of f as shown in Fig 8.1:

nonconvex

convex

strongly-convex

Figure 8.1: Subclasses of continuous differentiable function f .
strongly-convex quadratic convex quadratic convex non-quadratic non-convex

The above subclasses of general function f are defined precisely in section 8.2. If f is
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convex, then a necessary and sufficient condition for a point x∗ to be a minimizer of

f is ∇f(x∗) = 0 [85]. Furthermore, if f is bounded below, then there exists a unique

minimum [86]. The UOP problem (8.1) is to be solved by an iterative algorithm which

computes a sequence of iterates x0, x1, · · · ∈ dom f with f(xk) → f∗ as k → ∞. The

algorithm is terminated when f(xk)− f∗ ≤ ǫ, where ǫ > 0 is some specified tolerance.

First-order methods are iterative algorithms that use only function evaluations and

gradient information. They have received much attention due to their computational

cheapness and low memory requirement. The Barzilai-Borwein (BB) gradient method is

a subcategory of such first-order methods and does not guarantee a monotone decrease

in the objective function.

The BB gradient method [109] has been shown to be R-linear globally convergent

for strongly-convex quadratic functions [139] and globally convergent for convex

quadratic functions [140]. However, the BB gradient method is not globally con-

vergent for general function f . Goh et al [33], Leong et al [34] addressed the non-

monotonicity "drawback" of the BB method by enforcing monotonic descent in order

to ensure global convergence for general function f . Nevertheless, it has been experi-

mentally observed by [124, 141] that the potential effectiveness of the BB method was

related to the relationship between the step-size and the eigenvalues of the Hessian

rather than to the decrease of the function value.

Moreso, several researchers [29, 31, 35, 125, 142–144] have also pointed out that non-

monotone line-search schemes may considerably improve the rate of convergence, in

particular, cases where a monotone line-search scheme is forced to creep along the

bottom of steep-sided valleys (e.g. ill-conditioned functions). Nonmonotone techniques

have been distinguished by the fact that they do not enforce strict monotonicity to the

objective function values at successive iterates. Most nonmonotonic line-searches to

date are still a form of relaxed-descent conditions that satisfy an Armijo-like inequal-

ity ( e.g. [29, 31,35,125,142,144]).

Dai et al [32,145] have proposed an adaptation of the nonmonotone line-search [143] to
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the BB gradient method to establish global convergence for general function f .

Raydan [26] incorporated the nonmonotone line-search of [142] in the BB gradient

method to ensure global convergence for general function f . Modified-BB gradient

algorithms that incorporate a nonmonotone line-search in order to guarantee global

convergence of general function f are called Globalized BB gradient methods (GBB).

The variants of the globalized BB gradient method introduced by [26] have appeared

in subsequent works of [27,28,30,35]. These globalized BB gradient methods as repor-

ted in the literature still require relaxed-descent conditions that satisfy an Armijo-like

inequality,

f(xk + αkdk) ≤ Rk + αkc1∇f(xk)Tdk. (8.2)

where Rk represent some reference scalar value. There are several proposals for Rk in

the literature (see Section 8.3.1). As argued by Fletcher [124], "... the use of the line

search technique of Grippo, Lampariello and Lucidi [142] in the manner proposed by

Raydan [26] may not be the best way of globalizing the BB method, ...".

In this chapter, new modified-BB gradient methods that do not involve any inex-

act line-search are proposed and they are shown to be globally convergent for all

convex functions. In other words, the algorithms are globally convergent for func-

tions included in the hatched region of Fig. 8.1. Moreover, the algorithms do

not enforce monotonicity to the objective function values at successive iterates. The

Scaled-BBGM only requires a single gradient evaluation per iteration. Furthermore,

the Hybrid-BBGM accelerates the Scaled-BBGM by interleaving scaled-BB step-sizes

with BB step-sizes. Both proposed algorithms Scaled-BBGM and Hybrid-BBGM

are shown to be globally convergent for all convex functions.

The rest of this chapter is organized as follows: In sections 8.3 and 8.4, the proposed

modified-BB methods are described. The global convergence of the proposed meth-

ods for all convex functions will also be established therein and numerical results are

reported in sections 8.5 and 8.8 respectively.
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8.2 Notation

The notation is same as used in Chapter 7. Furthermore, the notation h ∈ C[R+, R+]

denotes a function h continuous on R+ = [0, ∞) and h : R+ → R+.

8.3 The Barzilai-Borwein step-size

The iterative algorithm

xk+1 = xk − αk∇f(xk). (8.3)

computes a sequence of iterates x0, x1, · · · ∈ dom f . This algorithm converges with

f(xk) → f∗ as k → ∞ if and only if {∇f(xk)} → 0. The choice of αk corresponds to

the subcategory of gradient method. The BB step-size corresponds to the BB gradient

method [109]. The BB gradient method can be arrived at in various ways. This is can

be done as follows:

1. One can interpret the BB step-size as scalar Quasi-newton update. Recall from

Chapter 7 (pg. 110) that the secant condition is given by,

Bk+1sk = yk. (8.4)

Take Bk to be a scalar, bk, and update using a scalar (symmetric rank-one update)

as follows

bk+1 = bk + uTu. (8.5)

Multiply both sides of (8.5) by sTk sk and use the secant condition (8.4), we have

that

uTu =
yTk sk − bks

T
k sk

sTk sk
. (8.6)
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Substitute uTu in (8.5), we then have

αBB1
k+1 = b−1

k+1 =
sTk sk

yTk sk
. (8.7)

Similarly, one could obtain

αBB2
k+1 = b−1

k+1 =
yTk sk

yTk yk
, (8.8)

by multiplying both sides of (8.5) with yTk yk .

2. Alternatively, the BB step-sizes
[
i.e. (8.7), (8.8)

]
are equivalent to min

α>0
{‖α−1sk−

yk‖} and min
α>0
{‖sk − αyk‖} respectively [146,147].

3. Moreover for quadratic functions, the BB step-sizes
[
i.e. (8.7), (8.8)

]
can be de-

rived from interpolation of the objective function as reported in [148]. Using

quadratic and conic models respectively, the following step-sizes were obtained

in [148],

αDY Y 1
k+1 =

sTk sk

2
(
f(xk)− f(xk+1) + sTk∇f(xk+1)

) , (8.9)

αDY Y 2
k+1 =

sTk sk

6
(
f(xk)− f(xk+1)

)
+ 4sTk∇f(xk+1) + 2sTk∇f(xk)

. (8.10)

It is straightforward to verify that (8.9) and (8.10) are equivalent to (8.7) if f is

quadratic in the line segment between xk and xk+1 [148].

In summary, the step-size of the BB gradient method is a scalar approximation of the

Hessian Bk+1 computed from the accumulated curvature information. It can also be

shown that for convex functions 1
L
≤ αBB

k ≤ 1
µ

where µ and L correspond to the

minimum and maximum eigenvalues of the averaged Hessian matrix respectively [149].

Nevertheless, the Proposition 8.1 uses the fundamental definitions of µ and L to prove

these bounds of the BB step-size for convex functions.

Proposition 8.1. If f is convex with convexity parameter µ ≥ 0 and the ∇f is Lipschitz

continuous with constant L, then the the BB step size is bounded with 1
L
≤ αBB

k ≤ 1
µ
.
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Proof. Let’s consider the BB step-size (8.7). Using the identity aT b ≤ ‖a‖‖b‖, we have

that

(xk+1 − xk)
T (∇f(xk+1)−∇f(xk)) ≤ ‖xk+1 − xk‖‖∇f(xk+1)−∇f(xk)‖. (8.11)

Since ∇f is Lipschitz continuous with constant L, i.e ‖∇f(xk+1)−∇f(xk)‖ ≤ L‖xk+1−

xk‖, it follows from (8.11)

(xk+1 − xk)
T (∇f(xk+1)−∇f(xk)) ≤ L‖xk+1 − xk‖2. (8.12)

Also it follows from the definition of strong-convexity that

(xk+1 − xk)
T (∇f(xk+1)−∇f(xk)) ≥ µ‖xk+1 − xk‖2. (8.13)

Thus, using (8.12) and (8.13), we obtain that

1

L
≤ sTk sk

yTk sk
≤ 1

µ
. �

It is interesting to note that for convex quadratic functions, the BB step-sizes (8.7) and

(8.8) are equivalent to the previous Cauchy and minimum-gradient step-sizes respectively.

αBB1
k = αSD

k−1 =
dTk−1dk−1

dTk−1Hdk−1
, (8.14)

αBB2
k = αMG

k−1 =
dTk−1Hdk−1

dTk−1H
THdk−1

. (8.15)

The alternate step (AS) method [150] is a particular case of j-cyclic steepest descent

method introduced in [151] for convex quadratic functions. It is a hybrid gradient

method which combines the Cauchy step and the BB step as follows:

αAS
k =





αSD
k if k is odd,

αBB
k if k is even.

(8.16)
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8.3.1 Globalized Barzilai-Bowein Gradient Method

As already noted in the introduction of this chapter, the BB gradient method (8.7), (8.8)

is globally convergent for convex quadratic functions. The globalized BB-gradient

method ensures convergence for convex non-quadratic functions by satisfying a non-

monotonic line-search condition. Most nonmonotonic line-searches to date are still a

form of relaxed-descent conditions that satisfy an Armijo-like inequality:

f(xk + αkdk) ≤ Rk + αkc1∇f(xk)Tdk. (8.17)

where Rk represent some reference scalar value. There are several proposals for Rk in

literature: :

1. GLL: Rk = max
0≤j≤mk

f(xk−j): maximum of a finite recent function values decreases

as reported in [142],

2. ZHL: Rk+1 = κkRk + (1 − κk)f(xk+1): average of successive function values

decreases as reported in [29],

3. ANL: Rk = κk max
0≤j≤mk

f(xk−j) + (1 − κk)f(xk): a convex combination variant

reported in [35] and mk is a non-decreasing integer, bounded by a fixed integer M.

Also c1, κk ∈ (0, 1).

One major drawback of this kind of nonmonotonic line-searches is that for a particular

choice of M, the acceptable {αk}k∈K may be so small that the globalized BB gradient

method produces a stagnating subsequence {xk}k∈K ⊂ {xk}. In addition, the numerical

performance of globalized BB gradient methods are sensitive to the choice of M and

it has been reported in [26, 27, 152] to perform very well for values of M ∈ (5, 20).

In general the heuristic choice of M is problem-dependent [26, 29, 153]. To overcome

these drawbacks, a modified-BB gradient method is presented in the next section. The

modified-BB gradient method is globally convergent for all convex functions. Moreover,

the modified gradient method is independent of any line-search and does not enforce

monotonicity in the objective function values.
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8.4 A scaled-BB step-size: Scaled-BBGM

Consider the iterative algorithm

xk+1 = xk − αk∇f(xk), (8.18)

where ∇f(xk) is the gradient of general function f . It has been shown that the

algorithm (8.18) can be cast in a control framework [154, 155] where αk is a control

parameter to be chosen dynamically in a feedback form. From a control-theoretic per-

spective, (8.18) is equivalent to Fig. 8.2 below.

✲ ✲rk = 0 uk yk

Nonlinear PlantController

✲

✻−
αk♠ ✲xk+1 = xk + uk

yk = ∇f(xk)

Figure 8.2: The Gradient Method.

In the case of a convex quadratic function, the closed-loop system in Fig. 8.2 becomes

xk+1 = (I− αkH)xk. (8.19)

Suppose that αk = α, then the closed-loop system in Fig. 8.2 is stable if all the

eigenvalues of (I − αH)) lie inside the open unit circle on the z-plane. This implies

that α < 2/L for the gradient method to converge to the optimal solution. However,

stability of Fig. 8.2 in the general case (i.e. 8.18) can be established using the following

corollary of the discrete Lyapunov theorem [43,44] ( see Chapter 2 ):

Corollary 8.1. Let x∗ be the equilibrium point of the closed-loop system (8.18). Assume

that ∇f(xk) is locally Lipschitz and let V : Rn → R be a scalar-valued continuous

differentiable function defined on Rn. Define ∆V(xk) := V(xk+1)−V(xk). Suppose

there exists V such that

(i) V(x∗) = 0,
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(ii) V(xk) > 0 for all xk 6= x∗ in Rn,

(iii) V(x)→∞ as ‖x‖ → ∞,

then the equilibrium point x∗ of the closed-loop system (8.18) is

• globally stable if ∆V(xk) ≤ 0 for all xk in Rn.

• globally asymptotically stable if ∆V(xk) < 0 for all xk 6= x∗ in Rn. �

In the case of convex quadratic functions, the use of V(x) = gTk gk and V(x) = gTk H
−1gk

can be used to establish the global convergence of the minimum gradient method and

the steepest gradient-descent method respectively [156]. For the general case of convex

functions, Corollary 8.1 is subsequently used to establish global convergence of the

gradient method (8.18) for a particular interesting choice of step-size αk.

Theorem 8.1. Given a convex continuous differentiable function f : Rn → R. Suppose

gk = ∇f(xk) is locally Lipschitz with constant L. Let αk+1 = αk
‖gk‖22

‖gk+1‖22 − gTk ∆gk
and

α0 be such that α1 6≈ 0. Then the closed-loop system (8.18) with this choice of αk+1

is globally asymptotically stable with the lim
k→∞

αk‖gk‖22 → 0 at an exponential rate of

ηk ∈ (0, 1). Furthermore, we have that the lim
k→∞
‖gk‖2 → 0.

Proof :

Choose the Lyapunov function candidate be such that V(xk) = αkg
T
k gk. Then condi-

tions (i), (ii) and (iii) of Corollary 8.1 are satisfied. Subsequently, it is shown that

∆V(xk) < 0 for all xk 6= x∗ in Rn. Note that −gTk ∆gk > 0 for convex functions.

Suppose

0 < αk+1 ≤ αBB1
k+1 i.e. 0 < αk+1 ≤ αk

gTk gk

−gTk ∆gk
. (8.20)

Then ∆V(xk) is given by ∆V(xk) = αk+1g
T
k+1gk+1 − αkg

T
k gk. This can be written as

∆V(xk) = αk+1(gk +∆gk)
T (gk +∆gk) − αkg

T
k gk, (8.21)
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where ∆gk = gk+1 − gk. Expanding (8.21), ∆V(xk) becomes

∆V(xk) = αk+1(g
T
k gk + gTk ∆gk +∆gTk ∆gk) + αk+1g

T
k ∆gk − αkg

T
k gk. (8.22)

Using ∆gk = gk+1 − gk, (8.22) reduces to

∆V(xk) = αk+1(g
T
k+1gk+1 − gTk ∆gk)︸ ︷︷ ︸

A

+ αk+1g
T
k ∆gk − αkg

T
k gk︸ ︷︷ ︸

B

. (8.23)

Since 0 < αk+1 ≤ αk

gTk gk

−gTk ∆gk
by supposition, then −2αkg

T
k gk < B < −αkg

T
k gk and it

follows that

∆V(xk) = αk+1(g
T
k+1gk+1 − gTk ∆gk) − αkg

T
k gk − ηkαkg

T
k gk, (8.24)

for some ηk ∈ (0, 1]. The obtained ∆V(xk) (8.24) is demonstrated by the graphical

interpretation of (8.23) in Fig. 8.3. The lines in Fig. 8.3 corresponds to A and B

designated in (8.23).

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−αkg
T
k gk

gT
k
gk

gT
k
∆gk

A

B

∆Vk = −ηkαkg
T
k gk

∆Vk

α
c
k+1

∆Vk = αkg
T
k gk

αk+1

αk

Figure 8.3: Graph of ∆V(xk) against αk+1.
∆Vk denotes ∆V(xk) and αc

k+1
corresponds to the proposed step-size. At αc

k+1
, the

summation of ∆V(xk) is less than 0.

Therefore, it is sufficient to choose αk+1 = αc
k+1 i.e.
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αk+1 = αc
k+1 = αk

gTk gk

gTk+1gk+1 − gTk ∆gk
(8.25)

to ensure that ∆V(xk) < 0 for all xk 6= x∗ in Rn. It remains to note that since f is

convex, then −gTk ∆gk > 0 and the supposition 0 < αk+1 ≤ αk

gTk gk

−gTk ∆gk
holds. Thus,

the choice of αk+1 in (8.25) guarantees that the closed-loop system (8.18) is globally

asymptotically stable.

Furthermore, with the choice of αk+1 (8.25), then ∆V(xk) reduces to

∆V(xk) = − ηkV(xk). (8.26)

Remark 8.1. The scalar ηk ∈ (0, 1) since αk+1 = αk

gTk gk

−gTk ∆gk
if and only if xk+1 = x∗.

It follows from (8.26) that V(xk+1) = (1− ηk)V(xk). Consequently, we have

αk‖gk‖22 = α0(1− ηk)
k‖g0‖22, (8.27)

i.e. αk‖gk‖22 monotonically decreases to 0. This implies that lim
k→∞

αk‖gk‖22 → 0. Since

we have 0 < αk+1 ≤ αBB1
k+1 , thus αk+1 is bounded away from zero and we have that

therefore lim
k→∞
‖gk‖2 → 0. �

Remark 8.2. The proof of Theorem 8.1 guarantees that αk‖gk‖22 decreases monotonic-

ally. It is to be emphasized that ‖gk‖22 does not necessarily decrease monotonically.

Remark 8.3. Note that as lim
k→∞
‖gk‖22 → 0, the step-size (8.25) tends to αBB1

k+1 and as

such the proposed step-size (8.25) can be interpreted as a scaled BB step-size.

Algorithm 8.1 (Scaled-BBGM). The outline is as follows:

Scaled-BBGM.

Given a starting point x0 ∈ dom f and α0 > 0.

repeat until stopping criterion is satisfied
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1. Update: xk+1 = xk − αkgk.

2. Update: αk+1 = αk
‖gk‖22

‖gk+1‖22 − gTk ∆gk
. · · · scaled BB step-size

end (repeat)

Remark 8.4. If α1 ≈ 0, the Scaled-BBGM might stagnate. The choice of α0 =
1

‖gk‖
ensures that α1 6≈ 0 and this corresponds to taking a unit step in the negative gradient

direction at the first iterate.

8.5 Simulation Examples I

Consider two test examples of the form

UOP : min
x∈Rn

f(x), (8.28)

where x ∈ Rn. The numerical tests investigate the effects of increasing the dimension

and condition number respectively on the performance of the proposed algorithm.

8.5.1 Simulation Setup

The simulation setup is same as in Chapter 7. The stopping criterion is ‖∇f(x)‖ ≤

10−6 for Ex. 1 and 2 respectively. All matrices are square and random such that

the Hessian has eigenvalues in the interval [ 1, L ]. This was achieved using singular

value decomposition to allocate the desired eigenvalues. All matrices and vectors were

randomly generated in MATLAB with seed rng(1234,’twister’) unless otherwise stated.

The simulations were also repeated for seed rng(5678,’twister’).

8.5.2 Test Functions and Solvers

The test function in Ex. 1 is a convex non-quadratic function introduced by Ray-

dan [26] while the test function in Ex. 2 is also a convex non-quadratic function

usually encountered in machine-learning literature. In all cases and examples, all
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line-searches implement one-dimensional quadratic interpolation ( [0.1, 0.9] ) with a

bisection safeguard ( see [26,148] ). Also, the step-size in the line-searches are bounded

as min{1030, max{10−30, αk}}. In all cases and examples, α0 =
1

‖gk‖
. The set of

solvers S considered in Ex. 1 is

• GLL+BB : GLL [142]+BB step
(
αBB1
k+1

)
,

• GLL+DYY : GLL [142]+DYY step
(
αDY Y 2
k+1

)
,

• GLL+BKF : GLL [142]+BKF step [157],

• GLL+BS : GLL [142]+BS step [158],

• Proposed algorithm Scaled-BBGM,

where GLL denotes the "Grippo, Lampariello, and Lucidi" nonmonotonic line-search.

The above Globalized BB gradient methods differ only in the initial step-size of the

quadratic interpolation (i.e. BB, BKF and BS). In Ex. 1. the value of M is taken

as: M = 25 if N ≤ 1000 and M = 100 if otherwise, except for N = 5000 where M = 120.

8.5.3 Numerical Results 1

Ex. 1: Raydan’s Strictly Convex “2” Function [26]

f(x) =
n∑

i=1

i

10
(exi − xi), x0 = [1, 1, · · · , 1]T . (8.29)

The objective function f(x) ∈ S1,1µ,L is a strictly convex function with convexity para-

meter µ = 0 and whose gradient is not globally Lipschitz-continuous.

The plot in Fig. 8.4(a) show the effect of increasing the problem size (N). As expected

the proposed Scaled-BBGM performs significantly better than other algorithms since

it does not involve an inexact line-search. The numerical simulations were repeated for

an
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Figure 8.4: Effect of problem size (N) on the run-time.

initial-vector x0 randomly-generated with seed rng(1234,’twister’). The plot in Fig 8.4(b)

show the effect of increasing the problem size (N). This plot in Fig. 8.4(b) also indicates

that the Scaled-BBGM is the optimal solver among the considered set of solvers S.

8.6 Nonmonotone Lyapunov Functions

Numerical examples indicate that Scaled-BBGM converges impressively especially if

µ is 0 (and L does not exist). Nonmonotone Lyapunov Functions (LF) relaxes the

monotonicity requirement of Lyapunov’s theorem in order to obtain less conservative

stability conditions. Nonmonotone LF given in [159] allows the Lyapunov functions to

increase locally, but guarantee a weighted decrease every few steps. In particular, a

generalization of Corollary 2.1 in [159] is established in Theorem 8.2.

Theorem 8.2. Let x∗ be the equilibrium point of the closed-loop system (8.1). Assume

that ∇f(xk) is locally Lipschitz and let V : Rn → R be a scalar-valued continuous

differentiable function defined on Rn. Let βi=1:m
k ∈ [0,∞) be dynamic nonnegative

scalars. Define ∆V(xk) := V(xk+1)−V(xk). Suppose there exists V such that

(i) V(x∗) = 0,

(ii) V(xk) > 0 for all xk 6= x∗ in Rn,
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(iii) V(x)→∞ as ‖x‖ → ∞,

(iv) βm
k ∆V(xk+m) + · · ·+ β1

k∆V(xk+1) + ∆V(xk) < 0 for all xk 6= x∗ in Rn

then the equilibrium point x∗ is globally asymptotically stable.

Proof :

The fact that there exists βi
k that satisfies (iv) implies that either of the corresponding

∆V(xk+m) should be strictly less than 0 i.e. the corresponding V(xk+m) is strictly

less than V(xk). Therefore, there exists a subsequence of V(xk) that is monotonically

decreasing. Since the subsequence is lower bounded by zero, it must converge to some

c ≥ 0. It can be shown (e.g. by contradiction) that because of continuity of V(xk), then

c must be zero. This part of the proof is similar to the proof of standard Lyapunov

theory (see e.g. [48]). Now that a converging subsequence has been established, then

for a given 0 ≤ βi
k ≤ β̃ and any ǫ > 0, one can find k̄ such that V(xk̄) ≤ { ǫ

1+β̃
, β̃ǫ

1+β̃
}.

Because of positivity of V(xk) and (iv), we have V(xk) ≤ ǫ for k ≥ k̄ . Therefore

V(xk)→ 0 and thus the equilibrium point x∗ is globally asymptotically stable. �

Remark 8.5. Furthermore, if βi=1:m
k = ∞ then we must have the corresponding

V(xk+m) − V(xk) < 0 for stability to be established. In this case, Theorem 8.2 reduces

to the result given in [160].

A less conservative nonmonotone Lyapunov stability condition is given in [161]. The

following theorem is adapted from [161] and the proof can be found in [161,162].

Theorem 8.3. [161] Let x∗ be the equilibrium point of the closed-loop system (8.18).

Assume that ∇f(xk) is locally Lipschitz and let V : Rn → R be a scalar-valued continu-

ous differentiable function defined on Rn. Define ∆V(xk) := V(xk+1)−V(xk). Assume

that there exists a function h ∈ C[R+, R+] independent of xk such that h(0) = 0. Let

E = {t0, t1, t2, · · · tn} ⊂ N be discrete set with tp > tq when p > q. Suppose there exists

V such that

(i) V(x∗) = 0,
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(ii) V(xk) > 0 for all xk 6= x∗ in Rn

(iii) V(x)→∞ as ‖x‖ → ∞,

(iv) V(xtn+1)−V(xtn) < 0 for all xtn 6= x∗ in Rn, tn ∈ E,

(v) V(xtm) < h
(
V(xtn)

)
for all tn < m < tn+1, m ∈ N, tn ∈ E,

then the equilibrium point x∗ is globally asymptotically stable. �

Remark 8.6. Theorem 8.3 requires the Lyapunov function to decrease monotonically

only in an unbounded set E of the time-instants. The last condition in the Theorem

ensures that the Lyapunov function is reasonably bounded between the time constants

not included in the set E.
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Figure 8.5: Plot of Lyapunov Functions.
The monotone Lyapunov function is required to decrease monotonically for all k ∈ N while

the nonmonotone Lyapunov function [161] is required to decrease monotonically in an
unbounded set {t0, t1, t2, t3 · · · } ∈ E ⊆ N.

8.7 A Hybrid BB Gradient Method: Hybrid-BBGM

In this section, a hybrid BB gradient method Hybrid-BBGM which interleaves the

scaled BB step-size (αSBB
k ) with the BB step-size (αBB

k ) is constructed. Global con-

vergence of the Hybrid-BBGM is established by using the sufficient conditions in

Theorem 8.2. Allowing the LF to be nonmonotone further increases the amount of

nonmonotonicity in the minimization process. Subsequently, the objective function f
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is restricted to subclass f ∈ S1,1µ>0,L i.e f is strongly-convex with Lipschitz-continuous

gradient.

Algorithm 8.2 (Hybrid-BBGM). The outline is as follows:

Hybrid-BBGM.

Given a starting point x0 ∈ dom f , sum = 0, sumckeck = −1 and α0 > 0.

repeat until stopping criterion is satisfied

1. Update: xk+1 = xk + αkdk.

2. Update: αk+1 = αBB1
k+1

3. Update: ∆V = αk+1‖gk+1‖22 − αk‖gk‖22

4. if t == 0 && ∆V > 0, sum = sum +∆V, sumcheck = 1, t = 1, m1 = 1;

elseif m1 == 1 && ∆V > 0, sum = sum +∆V, sumcheck = 1;

elseif m1 == 1 && ∆V < 0, sum = sum +∆V, sumcheck = sum, m1 = 0, m2 = 1;

elseif m2 == 1 && ∆V < 0, sum = sum +∆V, sumcheck = sum;

elseif m2 == 1 && ∆V ≥ 0, if αSBB
k+1 ≥

2

L
, αk+1 = αSBB

k+1 . end; · · · · · · · · · · · · · · ·

· · · · · · sum = sum + αk+1‖gk+1‖22 − αk‖gk‖22, sumcheck = sum, m1 = 0, m2 = 1;

end

5. Reset: if sumcheck < 0, sum = 0, t = 0, m1 = 0, m2 = 0; end

end (repeat)

Remark 8.7. Step 4 of Hybrid-BBGM detects the local peak of the LF after

time-instant ti ∈ E. Once the peak has been identified, then the algorithm takes a

BB step if a BB step reduces the Lyapunov function. Otherwise, it takes a scaled BB

step. However, if the scaled BB step is less than 2/L, then a BB step is taken. This is

continued until the value of the LF reduces below the value at time-instant ti. This new

time-instant is ti+1 ∈ E.
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8.7.1 Global Convergence

In this section, global convergence of the Hybrid-BBGM is established in Theorem 8.3.

The following Lemma is essential to the proof of Theorem 8.3.

Lemma 8.1. Suppose f is convex and gk = ∇f(xk) is globally Lipschitz with constant L.

If αk+1 = αk

gTk gk

−gTk ∆gk
, then αk+1‖gk+1‖22 ≤ (κ2 + κ− 1)αk‖gk‖22 where κ =

L
µ

and µ is

the convexity parameter. If αk+1 = αk

gTk gk

‖gk+1‖22 − gTk ∆gk
, then αk+1‖gk+1‖22 < αk‖gk‖22.

Proof :

The first part of the lemma is proved as follows: If αk+1 = αk

gTk gk

−gTk ∆gk
, then

gTk ∆gk = −αkg
T
k gk

αk+1
. (8.30)

From the definition of convexity, we have

(xk+1 − xk)
T (gk+1 − gk) ≥ µ‖xk+1 − xk‖2, (8.31)

and we can derive from (8.31) that

gTk gk+1 ≤ (1− µαk)g
T
k gk ≤ gTk gk. (8.32)

Also using the identity aT b ≤ ‖a‖‖b‖ and the definition of Lipschitz continuity, we have

(gk+1 − gk)
T (gk+1 − gk) ≤ L2‖xk+1 − xk‖2. (8.33)

It follows from (8.33) that

‖gk+1‖22 ≤ L2α2
k‖gk‖22 + gTk ∆gk + gTk gk+1. (8.34)
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Using (8.30) and (8.32), it follows from (8.34)

αk+1‖gk+1‖22 ≤ L2αk+1α
2
k‖gk‖22 − αkg

T
k gk +

αk+1

αk

αkg
T
k gk. (8.35)

Since 1
L
≤ αk ≤ 1

µ
for all k ≥ 0, it follows from (8.35)

αk+1‖gk+1‖22 ≤ (
L2

µ2
+

L
µ
− 1)αk‖gk‖22. (8.36)

The inequality (8.36) proves the first part of the Lemma. The proof of the second

part of the Lemma is same as in Theorem 8.1 i.e. if αk+1 = αk

gTk gk

‖gk+1‖22 − gTk ∆gk
, then

αk+1‖gk+1‖22 < αk‖gk‖22. �

Remark 8.8. In general, if
1

ǫ
≤ αk+1 ≤ αk

gTk gk

−gTk ∆gk
with ǫ > 0, then αk+1‖gk+1‖22 ≤

(κ2 +
ǫ

µ
− 1)αk‖gk‖22.

Theorem 8.4. Given a convex continuous differentiable function f ∈ S1,1µ>0,L : Rn → R.

Let αk be as constructed in Hybrid-BBGM. Suppose gk = ∇f(xk) is globally Lipschitz

with constant L, then the closed-loop system (8.18) with the choice of this αk+1 is

globally asymptotically stable with the lim
k→∞
‖gk‖2 → 0.

Proof :

Choose the Lyapunov function candidate be such that V(xk) = αkg
T
k gk. Then condi-

tions (i), (ii) and (iii) of Theorem 8.3 are satisfied. Condition (iv) is satisfied by con-

struction of the algorithm. Furthermore by virtue of Lemma 8.1, condition (v) of The-

orem 8.3 is satisfied with h(s) = (κ2+κ−1)s, s ∈ R+ if αk = αBB
k and h(s) = s, s ∈ R+

if αk = αSBB
k . Consequently, we have lim

k→∞
αk‖gk‖22 → 0. Since αk+1 is bounded away

from zero, therefore the closed-loop system (8.18)
(
i.e Hybrid-BBGM

)
is globally

asymptotically stable with lim
k→∞
‖gk‖2 → 0. �
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8.8 Simulation Examples II

The simulation setup is same as in § 8.5.1 and the test function is a convex non-quadratic

function. In this example, the set of solvers S considered is

• GLL+BB : GLL [142]+BB step
(
αBB1
k+1

)
,

• ZH+BB : ZHL [29]+BB step
(
αBB1
k+1

)
,

• AAN+BB : AAN [35]+BB step
(
αBB1
k+1

)
,

• Proposed algorithm Hybrid-BBGM,

where GLL denotes "Grippo, Lampariello, and Lucidi", ZH denotes "Zhang and Hager"

and AAN denotes "Amini, Ahookhosh and Nosratipour" nonmonotonic line-search re-

spectively. The above Globalized BB gradient methods differ only in the nonmonotonic

line-search condition (i.e. GLL, ZH and AAN). In Ex. 2, the value of M is taken as :

M =





20 N ≤ 500,

50 500 < N < 2000,

80 2000 ≤ N < 2500,

150 N > 2500,

and M =





20 κ ≤ 103,

50 103 < κ ≤ 104,

80 104 < κ < 106,

150 κ ≥ 106,

where κ is the condition number.

8.8.1 Numerical Results 2

Ex. 2: Approximate Huber loss

Given zi ∈ Rn, yi ∈ {−1, 1}, µ = 1 and N ≥ 1.

f(x) =
µ

2
‖x‖22 +

N∑

i=1

log
(
cosh(yi − zTi x)

)
. (8.37)

The objective function f(x) ∈ S1,1µ,L is a non-quadratic convex function with Lipschitz

gradient of L = λmax(F
TF ) and global convexity parameter of µ = 1, where F =
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[z1 · · · zN ]T ∈ RN×n. The design matrix F T and the explained variable y = sign(wTF T )

were generated as described in [137,138] except that w = [1; 1; 1 · · · 1]. The choice of w

means that each feature has an equal effect on the explained variable y.

The plots in Fig. 8.6(a) and Fig. 8.6(b) show the effect of increasing the problem size (N)

and condition number (L/µ) respectively. The run-time of the Scaled-BBGM has been

scaled by 0.25 and simulation stopped once the run-time exceeds 5000s. In any case,

the Scaled-BBGM performs miserably for this strongly-convex example. However,

its performance is significantly improved by hybridizing it with BB steps as indicated

for the case of Hybrid-BBGM. It is clear from Fig. 8.6(a) that as the dimension

increases, the proposed Hybrid-BBGM becomes more significantly efficient than any

of the considered Globalized BB methods. Furthermore, as shown in Fig. 8.6(b), the

performance of the Hybrid-BBGM is significantly better than all other algorithms.
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Figure 8.6: Effect of problem size (N) and condition number (L/µ) on the run-time.

The numerical simulations were repeated for randomly-generated matrices and vectors

with seed rng(5678,’twister’). The plots in Fig. 8.7(a) and Fig. 8.7(b) show the effect

of increasing the problem size (N) and condition number (L/µ) respectively. Similar
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Figure 8.7: Effect of problem size (N) and condition number (L/µ) on the run-time.

conclusions can be drawn from both plots in Fig. 8.7 about the effectiveness of the

proposed Hybrid-BBGM for strongly-convex functions .

8.9 Conclusion

This chapter has introduced two modified-BB gradient methods - Scaled-BBGM and

Hybrid-BBGM. Neither of the proposed algorithms requires any inexact line-search

and both are globally convergent for all convex functions. The effectiveness of the

algorithms are confirmed in numerical simulation of a few test functions with varying

dimension and condition number. For convex functions with convexity parameter µ = 0

and non-Lipschitz gradient, numerical simulations indicates that the Scaled-BBGM

performs significantly better than Globalized BB gradient methods [26, 148, 157, 158].

Furthermore, if the objective function is strongly-convex with Lipschitz-continuous

gradient, then the Hybrid-BBGM is significantly more efficient than the Globalized

BB gradient methods reported in [26, 29, 35]. However, the proposed algorithms are

distinguished from the Globalized BB gradient methods in that they do not require any

inexact line-search or specifying any problem-dependent parameter such as M. Moreover,

the efficiency of the proposed algorithms derives from the proper choice of Lyapunov

function V(xk).
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Chapter 9

Conclusion and Recommendations

9.1 Conclusion

This thesis have explored the subject matter of online-optimizing anti-windup control.

The contribution to this field is two-fold: analysis and implementation. The first part

of the thesis establishes a general framework for analyzing robust preservation in anti-

windup control systems. This framework - the robust Kalman conjecture - has been

verified for first-order SISO plants. Three main results were obtained regarding this

verification for the cases of additive uncertainty, input-multiplicative uncertainty and

feedback uncertainty. The results obtained indicate that the robust interval of an uncer-

tain first-order plant coincides with the nonlinearity’s slope interval for which the robust

Lur’e structure is absolutely stable. The saturation nonlinearity is an example of such

nonlinearities whose slope interval is bounded. Thus, anti-windup control systems that

can be reduced to a first-order Lur’e structure has the same measure of robustness as

their unconstrained counterpart.

Furthermore, this thesis presented three secant-based unconstrained convex optim-

ization algorithms. The simplified secant algorithm (Secant-Based-NGM ) is based

on updating the estimate-sequence parameter of Nesterov gradient method with secant

information whenever possible. This was achieved by imposing a secant condition on

the choice of search point. The Scaled-BBGM is a scaled Barzilai-Borwein gradi-
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ent method without line search that is shown to be globally convergent for all convex

functions. Finally, the Hybrid-BBGM accelerates the scaled-BB gradient method by

relaxing the monotonicity requirement of the discrete Lyapunov theorem. Numerical

examples (e.g. logistic and least-square losses) were used to demonstrate the effective-

ness of the proposed algorithms and the numerical results obtained were analyzed with

the aid of performance profiles.

9.2 Recommendations

This section highlights potential areas of future research.

9.2.1 Research Direction 1

The robust Kalman conjecture (RKC) has been verified true for first-order plants. Since

the Kalman conjecture is not valid beyond third-order plants, it would be interesting to

verify if the robust variant holds for second-order and third-order plants. Such analysis

would enlarge the class of anti-windup control systems for which robust preservation

holds or otherwise. Moreover, such theoretical work would provide more insights for

robustness analysis in general. Analyzing the RKC for 2nd or 3rd order plants should

preferably be done on a subclass basis as it is very likely that a single stability-multiplier

class (e.g. constant, Popov and Zames-Falb multipliers) might not be able to establish

the RKC for the entire class of 2nd or 3rd order plants.

9.2.2 Research Direction 2

The projected gradient method, allow more substantial rapid changes to the working

set by choosing a descent direction ∆x and searching along the piecewise linear path

P(x−α∆x), where α > 0 and P is the projection onto a feasible set. It is most efficient

when the constraints are simple in form, in particular, when there are only bounds on

the variables (box constraints). Richter et al [20,21] provided certification guarantees to

real-time model predictive control (MPC) applications based on projected fast gradient
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methods [23]. This has renewed interest in hardware and software implementations of

projected fast gradient methods ( see [118,163–165] ) as viable alternative algorithms for

solving bound-constrained optimization problems typically present in the control com-

munity. Consequently, further research into increasing the efficiency of unconstrained

gradient methods is a recipe for improved practical implementations of large-scale op-

timization algorithms in MPC and related applications.

9.2.3 Research Direction 3

The nonlinear conjugate gradient method (CGM) variants for non-quadratic convex

functions are no longer optimal due to the degradation of the conjugate property of

the gradients. Nonlinear CGM variants do not only employ a Wolfe-type line-search,

but must constrain the step-size αk such that dk+1 is a descent direction [166]. The

nonlinear CGM reported in [167] remains the most effective/robust variant and ensures

sufficient descent independent of the accuracy of the line search. An important feature

of these scheme which distinguishes it from the other schemes is that with their βZH
k

choice, dk+1 is always a descent direction for any step-size αk > 0, as long as dkyk 6= 0,

where yk = gk+1 − gk. A similar algorithm was also presented in [168]. A related

result was earlier reported in [169] in which with their βDY
k choice, only a standard

Wolfe line-search is required to generate the descent direction dk+1. It can be shown

that the scaled BB step-size proposed in this thesis satisfies some Wolfe-type line-search

condition under certain restrictions. As noted in [124], it is expected that a convergent

BB-like method might show improved performance compared to the CGM for this class

of functions. It would be of interest to further explore how this scaled BB step-size

or related results could fit in conjugate gradient methods. Moreso, the recent surge

in developing spectral conjugate gradient methods for unconstrained optimization is

evident in [170,171].
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Appendix A

A.1 Robust Circle Criterion for Input-Multiplicative Uncertainty

Set W (jω) = η, substitute G(jω) and let xω = b2 + ω2, then stability condition (4.17)

reduces to

2ηkab+ (2η − 1)xω − η2k2w̄2a2 > 0 ∀ω ∈ R. (A.1)

It is sufficient that (A.1) is satisfied for n ≥ 1
2 and 2ηkab − η2k2w̄2a2 > 0. Moreso,

larger values of k are obtained for smaller values of n. Choose η = 1
2 , then the stability

condition (A.1) reduces to

4kab− k2w̄2a2

4
> 0, (A.2)

k <
4b

aw̄2
. (A.3)

This equality (A.3) is subsequently shown to be indeed tight for the case of w̄ < 2.

Rewriting the stability condition (A.1) as

−n2k2w̄2a2 + 2η(xω + kab)− xω. (A.4)
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There ∃ η s.t (A.4) is satisfied provided (A.4) has real roots. We therefore require for

real roots of (A.4) that we have

(2kab+ 2xω)
2 − 4(k2a2w̄2xω) > 0, (A.5)

x2ω + (2kab− k2a2w̄)xω + k2a2b2 > 0. (A.6)

(A.6) is satisfied ∀ω provided (A.6) has no real roots. We therefore require for no real

roots of (A.6) that we have

(2kab− k2a2w̄)2 − 4k2a2b2 ≤ 0, (A.7)

k4a4w̄4 − 4k3a3bw̄2 ≤ 0, (A.8)

k ≤ 4b

aw̄2
. (A.9)

The minimum of the function in (A.6) occurs at

minxω = −1

2
(2kab− k2a2w̄)

∥∥
k= 4b

aw̄2
, (A.10)

minxω =
4b2

w̄2
, (A.11)

ω2
min =

4b2

w̄2
− b2. (A.12)

Thus with w̄ < 2, we have k ≤ 4b
aw̄2 for robust absolute stability. With w̄ ≥ 2, the

minimum of the function in (A.6) occurs at ωmin = 0. Hence, for w̄ ≥ 2, choose

η = kab+b2

k2w̄2a2
, then the stability condition (A.1) reduces to

b2 + 2kab+ k2a2(1− w̄2) > 0. (A.13)

Thus with w̄ ≥ 2, we therefore have k < b
a(w̄−1) for robust absolute stability.
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