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Abstract
The tradeoff between computational complexity and speed, in addition to
growing demands for real-time BMI (brain–machine interface) systems, expose
the necessity of applying methods with least possible complexity. Willison
amplitude (WAMP) and slope sign change (SSC) are two promising time–
domain features only if the right threshold value is defined for them. To
overcome the drawback of going through trial and error for the determination
of a suitable threshold value, modified WAMP and modified SSC are proposed
in this paper. Besides, a comprehensive assessment of statistical time–domain
features in which their effectiveness is evaluated with a support vector machine
(SVM) is presented. To ensure the accuracy of the results obtained by the
SVM, the performance of each feature is reassessed with supervised fuzzy
C-means. The general assessment shows that every subject had at least one
of his performances near or greater than 80%. The obtained results prove
that for BMI applications, in which a few errors can be tolerated, these
combinations of feature–classifier are suitable. Moreover, features that could
perform satisfactorily were selected for feature combination. Combinations of
the selected features are evaluated with the SVM, and they could significantly
improve the results, in some cases, up to full accuracy.

Keywords: electroencephalogram, brain–machine interface, feature extraction,
support vector machine, fuzzy C-means, mutual information

1. Introduction

Brain–machine interface (BMI) is a direct communication pathway between the brain and
an external electronic device aiming at translating brain activities into control commands
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(Gilja et al 2011). It is for more than four decades that the possibility of brain–computer
communication based on electroencephalogram (EEG) signals has been examined (Vidal
1973). EEG is the foundation of most of the current brain-controlled applications. EEG
signals are known by their poor signal-to-noise ratio and their high dimensionality. Besides,
their non-stationary characteristics and rapid variation over time and over sessions of recording
pose a real challenge (Wolpaw et al 2000).

To achieve a good classification performance, the set of input features and the choice
of the applied classifier are crucial (Pfurtscheller and Neuper 2001, Herman et al 2008).
If a feature provides large interclass difference for different classes, the applied classifier
can exhibit a better performance (Herman et al 2008). Several different algorithms with a
variety of complexity and efficiency in different domains have been suggested for motor
imagery EEG signal analysis (Bashashati et al 2007, Lotte et al 2007, Dornhege et al
2002, McFarland et al 2006, Rechy-Ramirez and Hu 2011). Classifiers mostly identify and
differentiate different patterns of brain activities. Hence, a BMI system can be considered
as a pattern recognition system partially. Performance of pattern recognition systems directly
depends on the effectiveness of feature extraction and the applied classifier (Herman et al 2008).
Among the tested features for EEG signals, time–domain features have low computational
complexity. Thus, they could be considered as an appropriate option for real-time BMI systems
(Geethanjali et al 2012).Although there have been several attempts to evaluate and compare
the effectiveness of time–domain features, such as adaptive autoregressive model (Schlögl
et al 1997a, 1997b, 2005, Ramoser et al 2000, Lee et al 2005) and common spatial filtering
(Ramoser et al 2000, Lee et al 2005, Ziehe et al 2004, Pham and Cardoso 2001), there is
almost no study investigating the feasibilities of statistical time–domain features, while this
evaluation is necessary to verify their potential impacts.

The organization of this paper is as follows. In section 2, EEG signal acquisition,
required experimental setups and applied feature extraction methods are explained. Section 2
also includes the proposed modified WAMP and modified SSC in addition to the applied
classifiers. Experimental results, evaluation matrices and discussions are presented in
section 3. Eventually, the paper ends with the conclusion and future works in the last
section.

2. Materials and methods

2.1. EEG signal acquisition

Almost all multiclass movement-related potentials records are imaginations of left-hand
movements, right-hand movements, feet (for three classes) or/and (for four classes) tongue
movements. One of such major widely applied records is the BCI competition 2005 (Blankertz
2005).

In this study, by considering the fact that using more than two classes requires a suitable
number of well-discriminable brain states, different sets of movement-related potentials are
recorded. In essence, multiclass decisions should be derived from a decision space natural
to human subjects such as movements of different body parts which have a somatotopically
ordered layout in the primary motor cortex resulting in spatially discriminable patterns of EEG
signals.

Instead of the aforementioned commonly used movement-related potentials, in this study,
subjects were asked to think about the movements of their right hand and left hand, and
the movement of their tongue to the right side of their mouth and the left side of their
mouth.
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2.1.1. Subject preparation and electrode placement. EEG signals are recorded from multiple
electrodes placed on the subject’s scalp, resulting in multichannel time series data. Three
electrodes, known as C3, Cz and C4, were located on the subject’s scalp based on the
international 10–20 electrode placement system (Jasper 1958), in a mono-polar montage. These
three electrodes cover the sensory motor cortex and they been recommended for recording
motor imagery movements (Müller-Gerking et al 1999, Homan et al 1987). The reference
electrode was located on the left mastoid, behind the ear, and the ground electrode was placed
at Fpz, near the forehead.

The experiment consists of three runs for each of the four movements, 1 min in length.
Each run is treated as one trial in the processing phase. The EEG data were recorded from
15 subjects, of which six are female. The subjects were in the range of 20–36 years old.
During the recording signal, the subjects were asked to replace the desired movement with the
imagination of the related movements.

2.1.2. Experimental setup and EEG acquisition. EEG signals were recorded via the g.tec R©

device, which is known to be one of the most accurate devices with high resolution available
for recording bio-signals. Signals were recorded at the rate of 512 Hz. Subjects were free of
medication and central nervous system abnormalities, and had no prior experience with EEG-
based systems. In the recording environment, only intense sound disturbances were avoided.
There has also been no use of bio-feedback to help the subjects perform these thinking tasks
better. All runs for a subject were conducted on the same day with several breaks in between.

2.2. Feature extraction techniques

Measuring brain activity through EEG signals leads to the acquisition of a large amount of
data. Feature extraction highlights important data and eliminates redundant or non-informative
data, which is a transformation of the raw signal to a feature vector. This transformation causes
dimensionality reduction, which naturally speeds up the classification process (Herman et al
2008). Time–domain features are computed based on the signals’ amplitudes, and they require
no transformation or complex calculation.

Among the most common statistical time–domain features, 15 were selected and examined
for EEG data in the current work. As it is known that more gain can be expected from the
combination of single features, if these features provide complementary information (Rechy-
Ramirez and Hu 2011), therefore, several features are selected for feature combination. The
applied features (Rechy-Ramirez and Hu 2011) are available in the appendix.

For the experimental evaluation, each trial is divided into hundred segments. Each
segment’s length is 255 ms, and segments do not overlap. This study only considers an
offline analysis of the BCI experiment since the offline processing is the most stable form for
any evaluation or assessment (Blankertz et al 2004).

2.2.1. Slope sign change (SSC). SSC is a feature that represents a frequency aspect of the
EEG signal with the number of times that the slope of a waveform changes its sign. In the
SSC, a threshold is included to reduce the noise. Given three consecutive samples, xi−1, xi and
xi+1, the SSC is incremented if

{xi > xi−1 and xi > xi+1} or {xi < xi−1 and xi < xi+1}
and

|xi − xi+1| � T or |xi − xi−1| � T.

(1)

mahyarhamedi
Sticky Note
one min+ 512 sampling--> 30000 samplesjust 1 runsubjects were asked to continuously perform the considered movements
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2.2.2. The Willison amplitude (WAMP). The WAMP, considering equation (2), counts the
number of times that the absolute value of difference between the EEG signal amplitude of
two consecutive samples exceeds a predetermined threshold value:

WAMPK =
N−1∑
i=1

f (x)

f (x) =
{

1 |xi − xi+1| > T
0 otherwise

.

(2)

In equations (1) and (2), N is the length of the segment, k is the current segment, xi is the
current point of signal, i is the index of the current point and T is the threshold value.

2.3. Proposed modified WAMP and modified SSC

Both WAMP and SSC are time–domain features which have been suggested for EMG signals
among bio-signals (Rechy-Ramirez and Hu 2011). In Khorshidtalab et al (2012a), (2012b) and
Vigneshwari et al (2013), they have been applied for EEG signals and turned to be remarkably
discriminant to EEG data. The noise level of the signal has direct effect on the performance
of these two methods. The right threshold value for a signal could be very different from
the right threshold value for the same signal after filtering and signal conditioning (Beim
Graben and Kurths 2003). Although these methods have been suggested and are known to
be discriminant, there is no suggestion or method for defining an exact, applicable threshold
value in the literature for them. In most papers and works, heuristic methods are applied by
researchers for finding a suitable value for T (Rechy-Ramirez and Hu 2011, Khorshidtalab
et al 2012a, 2012b, Vigneshwari et al 2013). Not only is going through trial and error for an
acceptable value time consuming, but it also does not guarantee stable processing, without
further supervision, since finding the value of T through trial and error might face failure by
not finding any appropriate threshold values at all.

In order to have feature values with distribution close to the normal distribution, one of the
possibilities is to apply the log-transform values instead (Pfurtscheller and Neuper 2001). In
other words, when the feature set is extracted from the EEG signal and is ready to be passed to
the classifier, in this stage, the actual data can be replaced with their equal logarithmic value;
this transformation has been done for all the feature values in the current work. This simple
manipulation of data can make a difference in many aspects.

2.3.1. Modified WAMP. If a piece of EEG signal which is divided to several segments is
available, by using the following method an exact T can be found.

The T value should be small enough so that this method delivers at least one count
per each segment. To find the T value that meets the condition, it is necessary to know all
the data points in all segments, which are not approximately equal with their next points,
within a predefined quantization interval. Considering these points as a set, this set is called
a set of ‘acceptable points’. Then we calculate the distance of each accepted point from its
next point. Therefore, for each segment, we have a set of ‘acceptable points’ and a set of
‘distance’.

If we choose the maximum value of each distance set for each segment, there would be a
new set which is for the whole signal and includes a value from each set. The minimum value
of the last set is to be chosen as the T.

If there are several classes to be compared, to have a valid and suitable T for all classes,
this process should be repeated for the signal of each class. Among the Ts belonging to
each class, the minimum T should be chosen for the final T. We demonstrate that this T is
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better compared to other possible values for T. Since this value is the minimum possible
value in the last set, it causes one count for the segment it is chosen from and one or more
counts for the other segments. Any greater value than the selected T would deliver zero as the
feature value for some segments. In this case, it is evident that two different signals which
belong to two different classes seem identical for the classifier that faces them with zero
values.

Any value less than the selected T will possibly deliver more number of counts for each
segment. Comparing more counts when we have the minimum counts, where none of them is
zero, is also discriminant enough to be no advantage.

The procedure of finding the right T is as follows.

Let Ai = sets of acceptable data points for each segment. Therefore,
A1 = {a11, . . . , a1k}, A2 = {a21, . . . , a2k}, A3 = {a31, . . . , a3k}, . . . , AN = {aN1, . . . , aNk},
where aij is the jth point which belongs to the ith segment, which is not equal to its
immediate next data point; i = {1, . . . , N} where 1� j � M.
Let Di = sets of distances between each accepted point and its next point in the ith
segment. Therefore,
D1 = {d11, . . . , d1k−1}, D2 = {d21, . . . , d2k−1}, D3 = {d31, . . . ,d3k−1}, . . . , DN = {dN1, . . . ,
dNk−1}.
Let Zi = maximum value of each set.
Z1 = max({d11, . . . , d1k−1}), Z2 = max({d21, . . . , d2k−1}), . . . , ZN = max({dN1, . . . , dNk−1})
and let Zclass1 = {Z1, Z2, . . . , ZN}.
Tclass1 = min(Zclass1) = min({Z1, Z2, . . . , ZN}).
For each class, the same procedure should be completed. Having P classes leads us to
Tclass2 = min(Zclass2) = min({Z1, Z2, . . . , ZN}), . . . and TclassP = min(ZclassP) = min({Z1,
Z2, . . . , ZN}).
The final T is defined as follows:
T = min ({Tclass1, Tclass2, Tclass3, . . . , TclassP}),
and the condition should be changed to

f (x) =
{

1 |xi − xi+1|� T
0 otherwise

.

2.3.2. Modified SSC. By considering a piece of EEG signal which is divided into several
segments, trying this method could be a promising way to find a certain T value that causes at
least one count for each segment.

To find the T value that meets the mentioned condition, we need to know all the points in
every segment that satisfy the SSC’s condition. If we consider these points as a set, we call
this set a set of ‘acceptable points’. By calculating the distance of each accepted point from
its previous point and to its next point, we can come up with a set named ‘distances’. In the
distance set, each element itself is a set of two positive values. If any of these points should
be counted, the T should be smaller than the smaller distance in each set of two distances
each. Thus, between each two distance values, the smaller one should be chosen to proceed
to the next set. Now, there is a new set for each segment which consists of the distance of
each acceptable point from either its previous point or to its next point, the one that makes the
smaller distance. If we choose the maximum value of each set for each segment, we will have
a new set. In this new set which is for the whole length signal and includes only one value
from each segment, the minimum value should be chosen for T.
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Let Si = sets of acceptable points for each segment.

S1 = {s11, . . . , s1k}, S2 = {s21, . . . , s2k}, S3 = {s31, . . . , s3k}, . . . , SN = {sN1, . . . , sNk},

sij = the jth point which belongs to the ith segment that could satisfy the SSC’s condition,
where M is the number of data points in each segment, 1 � j � M−2 and 1 � I � N.

Let Di = set of distances of previous and next points to each acceptable point.

dijp = distance of the jth acceptable point in the ith segment with its immediate previous
point.

dijn = distance of the jth acceptable point in the ith segment with its immediate next point:

min (dijp, dijn) = dij,

where dij = the minimum distance value of each acceptable point, which it makes with
its next or previous data point.

MD1 = {d11, . . . , d1k}, MD2 = {d21, . . . , d2k}, . . . , MDN = {dN1, . . . , dNk}.

Let us assume max(MDi) = max({dil, . . . , dik}) = {xi}.

Then, X = {x1}U{x2}U . . . U{xN}; therefore, X = {x1, x2, . . . , xN}
Tclass1 = min({Xclass1}) = min {x1, x2, . . . , xk}.

For each class, the same procedure should be completed. Having P classes leads us to

Tclass2 = min({Xclass2}) = min{x1, x2, . . . , xk}, . . . and TclassP = min({XclassP}) = min{x1,
x2, . . . , xk}.

The final T is defined as follows:

T = min({Tclass1, Tclass2, . . . , TclassP}).

2.4. Classification

Support vector machine (SVM) and supervised fuzzy C-means (SFCM) are two different
classifiers with different principles and approaches. To have a just and fair evaluation, both
FCM and SVM are applied for evaluating the effectiveness of the mentioned time–domain
features in this work. The comparison between their results provides a clearer picture of the
capability of these features and classifiers for distinguishing those four mental tasks.

2.4.1. Support vector machine. The SVM is one of the best state-of-the-art classifiers with
lower complexity compared to other classifiers such as neural network and fuzzy. The main
idea behind the SVM is to find discriminant hyperplanes that separate the data which belong
to different classes with the maximum possible margin. Maximizing the margins increases
the generalization capabilities of the classifier. The SVM uses a regularization parameter that
enables accommodation to outliers and allows error on the training set. With small increase
of the classifier’s complexity, a linear SVM can make nonlinear decision boundaries by using
the ‘kernel trick’. Generally, it is done by mapping the data to another space, mostly of much
higher dimensionality, with the help of the kernel function.

The SVM has several advantages due to its margin maximization and regularization
term. Insensitivity to overtraining and dimensionality, a few parameters that need to be tuned
manually and good generalization properties are the other advantages of the SVM (Burges
1998). The applied SVM in this work is a multiclass SVM with a one-versus-one strategy.
Polynomial kernel is used as the kernel function and the penalty factor, C, is set as 1000
through trial and error.
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2.4.2. Supervised fuzzy C-means. FCM is a method of clustering that has recently been
applied for the classification of various kinds of biomedical signals. Fuzzy clustering methods
like FCM are more precise than crisp ones. Since a total commitment of a vector to a given
class is not essential for each iteration, and it allows data to belong to two or more clusters
at the same time, therefore, FCM is also known as an overlapping data clustering method.
The advantage of a fuzzy model is that all the variables are continuous and differentiable.
Therefore, the formulated problem is easier to solve. In the current work, the supervised
version of FCM is applied to create a suitable direction during the training procedure. FCM is
an unsupervised learning algorithm. A common problem with FCM is that the cluster structure
does not necessarily correspond to the classes in the dataset. Consequently, the classification
accuracy and thereafter, the efficiency is less. Class labels provide a convenient direction
throughout the training procedure, as is being done in supervised learning methods. This
method is called SFCM. Data grouping by categorized preliminary labeled samples or by
modifying an available set of categories that reveal irregularities in the dataset is the major
capability of supervised clustering. The principle of SFCM is to apply the labeled data samples
to monitor the repetitive optimization procedure. Therefore, the obligation of association of a
vector to a known class for each iteration is not essential (Krishnapuram and Keller 1996). The
characteristics of the employed dataset such as the similarity or distance between respective
data points are fundamental for clustering techniques. Distance, connectivity and intensity
are the most common parameters where their measurement depends on the data and also the
application. These parameters control the way of cluster formation. In this work, the Euclidean
distance-based similarity measure is applied for class identification.

The number of classes is given as 4, and in the training, phase and labels of data are
provided for the classifier. By means of the given information, the cluster center of each
cluster and the initial distance-based similarity were computed.

3. Results and discussion

3.1. General assessment

Each feature as a three-dimensional single feature vector, with respect to three chosen
electrodes (C3, Cz, C4), has been evaluated with the SVM. Random selection of samples,
using shuffle function, for training sets is performed each time. After the selection, data are
segmented. To assess the classification performance, the generalization error was estimated
by fivefold cross-validation. The reported standard deviation is calculated from the accuracy
of the fivefold cross-validations. The ratio of the training data to the test data is 70:30. Each
time the classifier is tested with the data of the same subject that it was trained with. Thus,
the following is an assessment of a subject-specific BCI. The average accuracy and standard
deviation of each single feature are represented in table 1 for the SVM.

Regarding the standard deviation in the tables, small standard deviations indicate that,
regardless of the feature ability in distinction, the feature performs similarly. On the contrary,
a large standard deviation indicates that the feature is not robust and had difficulty dealing
with the chaotic behavior of the EEG signal. Naturally, the best feature is the one with the
highest mean value and the lowest standard deviation.

The best average result is achieved by WAMP and SVM with an average of 87.88 ±
6.53% for all subjects. The worst result is obtained by skewness and SVM. The obtained result
is an average of 26.6% and a standard deviation of 2.9.

The overall result is acceptable as every subject has at least one of their performances
greater than 80%, except subject 8 with a maximum of 79.82% and subject 13 with 78.83%
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Table 1. Average classification accuracy standard deviation of features evaluated with the SVM.

Average Standard Minimum accuracy Maximum accuracy
Feature accuracy (%) deviation (%) (by subject) (%) (by subject)

MAV 72.98 10.83 58.15 (S2) 92.64 (S9)
MAX 50.27 12.44 34.83 (S1) 75.16 (S4)
SSI 72.15 11.17 56.67 (S12) 90.67 (S9)
WAMP 87.88 6.53 77.70 (S14) 98.16 (S5)
WL 51.13 9.45 31.67 (S1) 68.52 (S6)
MMAV1 71.85 10.64 56.80 (S2) 90.84 (S9)
MMAV2 51.71 12.23 33.49 (S2) 70.14 (S3)
IEEG 73.68 11.02 58.63 (S2) 93.65 (S9)
VAR 46.54 6.16 36.65 (S13) 58.82 (S14)
SSC 82.03 11.27 65.15 (S13) 99.33 (S2)
STD 46.10 6.15 37.81 (S13) 58.17 (S14)
Skewness 26.60 2.90 20.83 (S14) 31.84 (S4)
Kurtosis 45.19 9.55 35.62 (S2) 69.49 (S9)
MV 31.22 4.46 24.00 (S12) 46.70 (S11)
RMS 74.47 10.05 59.98 (S2) 93.97 (S9)

Table 2. Average classification accuracy and standard deviation of features evaluated with FCM.

Average Standard Minimum accuracy Maximum accuracy
Feature accuracy (%) deviation (%) (by subject) (%) (by subject)

MAV 62.86 16.66 35.17 (S13) 91.00 (S9)
MAX 54.99 12.23 34.00 (S15) 80.41 (S3)
SSI 59.58 13.91 39.50 (S2) 92.93 (S9)
WAMP 79.77 10.19 54.00 (S12) 96.00 (S5)
WL 42.44 9.10 31.63 (S8) 64.60 (S6)
MMAV1 59.47 15.39 38.29 (S2) 38.29 (S2)
MMAV2 51.81 16.89 16.67 (S13) 83.87 (S11)
IEEG 65.03 15.91 37.89 (S1) 88.89 (S3)
VAR 34.69 10.72 19.44 (S7) 57.14 (S11)
SSC 74.45 17.59 46.67 (S9) 99.00 (S6)
STD 39.84 10.95 22.39 (S13) 61.67 (S11)
Skewness 38.84 11.84 21.00 (S11) 60.00 (S3)
Kurtosis 39.74 10.95 22.13 (S1) 59.60 (S3)
MV 38.58 7.98 26.32 (S13) 55.50 (S11)
RMS 65.64 19.22 30.00 (S1) 98.00 (S9)

accuracy. Additionally, 9 out of 15 subjects had at least one of their performances with more
than 90%. These results show that for BMI applications, which can tolerate a few errors, these
feature–classifiers can be considered as potential options.

To be sure of the result obtained by the SVM, each feature is reassessed with FCM in
exactly the same circumstances. The average accuracy and standard deviation of each feature
are also calculated, and are represented in table 2 for FCM.

For 11 out of 15 features, the SVM performed better than FCM in terms of average
accuracy. Only for four features, namely, MV, MAX, MMAV2 and skewness, FCM had higher
average classification accuracy. It could be observed from a comparison between tables 1 and 2
that variation of the obtained results with FCM is substantial compared to SVM. This fact is
quantified by more variation in the average value as well as higher standard deviation of each
feature assessed by this classifier, which is represented in figure 1, for ease of comparison.
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Figure 1. Average classification accuracy of features evaluated with the SVM (solid line) and FCM
(dotted line).

In terms of complexity, FCM is more complicated as it consumed considerably more time
to deliver the final results compared to the SVM. The minimum and maximum results are
also presented in both tables along with the subject who could obtain the result. Tracking the
subjects’ performances would be beneficial in the case of designing subject-specific systems.

3.2. Benchmarking

Although many parameters differ between the current experiment and the experiments in the
BCI competitions, either BCI competition III or BCI competition IV, to evaluate the applied
approaches, the obtained results in this work are compared with the obtained results of these
two online databases. In the BCI competition III, dataset IIIa is cued motor imagery with
four classes including left-hand, right-hand, foot and tongue movements, from three subjects.
Regarding dataset IIIa, the approach of the third group could obtain classification accuracy as
high as 94.81% for the first subject and as low as 41.11% for the second subject (Blankertz et al
2005). Variations of the results and the obtained accuracies are similar with the results obtained
in this work. The distribution of a feature vector for each feature of the current work for one of
the selected subject can be reviewed in Khorshidtalab et al (2012a), (2012b). In terms of the
BCI competition IV, dataset IIa is cued motor imagery with four classes including left-hand,
right-hand, feet and tongue movements from nine subjects. Compared to the obtained results
for the BCI competition, dataset IIIa and our obtained results, the results are relatively low,
which could be due to the distribution of data and the associated artifact. In dataset IIIa, the
EEG signal of subject 5 and subject 6 were the problematic ones. Considering all five proposed
approaches for classification, these two subjects could gain the two lowest accuracies among
all. The three wining algorithms used the SVM as either the main classifier like the current
work, or a part of classification algorithm, such as group 2 that used the ensemble method
for classification which is bagging of SVM, K-nearest neighbors and the linear discriminant
analysis (Tangermann et al 2012).

3.3. Assessment of the proposed features

After finding the right T through the proposed procedure for each subject, modified WAMP
and modified SSC are evaluated with the SVM. The obtained accuracies for these two methods
are shown in table 3.
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Table 3. Classification accuracy for modified WAMP and modified SSC evaluated with the SVM.

Found T for WAMP Accuracy Found T for SSC Accuracy
Subject (proposed method) (%) (proposed method) (%)

1 5.1 88.33 1.961 81.67
2 8.17 96.67 0.958 100
3 2.77 89.17 0.460 94.17
4 1.09 86.67 0.141 87.50
5 0.5 98.33 0.053 92.50
6 6.78 83.33 1.080 90.00
7 14.0 92.50 3.987 99.17
8 0.55 85.83 0.052 74.17
9 0.92 95.83 0.119 79.17

10 1.95 85.83 0.119 82.50
11 0.56 80.00 0.254 76.67
12 2.28 86.17 0.257 78.33
13 1.13 75.00 0.075 66.33
14 0.43 84.17 0.032 91.67
15 0.56 78.33 0.041 71.67

Table 4. Comparison of the classification accuracy for WAMP evaluated with the SVM.

Proposed T T = 10 T = 5 T = 1 T = 0.1 T = 0.01
Subject Accuracy

1 88.33 NA 87.5 55.83∗ 33.33∗ 25.83∗

2 96.67 NA 95 90.83 50.83∗ 25∗

3 89.17 NA NA 82.50 73.33 35∗

4 86.67 NA NA 84.17 83.33 55∗

5 98.33 NA NA NA 95 71.67
6 83.33 NA 80 42.59∗ 41.67∗ 25∗

7 92.50 91.31 84.17 75 32.50∗ 25∗

8 85.83 NA NA NA 84.17 54.17
9 95.83 NA NA NA 77.50 50.83∗

10 85.83 NA NA 85 59.17 39.17∗

11 80.00 NA NA NA 67.50∗ 31.67∗

12 86.17 NA NA 84.17 65 31.67∗

13 75.00 NA NA 73.8 60.83 39.17∗

14 84.17 NA NA NA 77.50 62.50∗

15 78.33 NA NA NA 75.83 51.67∗

Additionally, the related accuracy for each found value, through the proposed method,
is compared with some other possible values for T. The experimental results are shown in
tables 4 and 5, respectively. ‘ACC’ indicates accuracy and ‘NA’ expresses not available, which
is zero accuracy in mathematical form. Values marked with star (∗) are determined when
misclassification occurs. The importance and sensitivity of finding the precise threshold value
is clear from the EEG behavior of most of the subjects while facing different values for T. For
instance, the proposed method for the WAMP found T = 8.17 for subject 2, and the SVM could
classify it with 96.67%, while if T = 10, the classification is totally lost and misclassification
occurs and for T = 5, the SVM could obtain 95%. The same trend can be observed from the
EEG behavior of subject 6 while facing different threshold values for T.
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Table 5. Comparison of the classification accuracy for SSC evaluated with the SVM.

Proposed T T = 1 T = 0.1 T = 0.01
Subject Accuracy

1 81.67 69.17 62.50 60.00
2 100 NA 100 100
3 94.17 NA 91.67 88.33
4 87.50 NA 85.00 75.00
5 92.50 NA NA 85
6 90.00 88.33 79.17 86.67
7 99.17 92.50 91.67 90.83
8 74.17 NA NA 65.00
9 79.17 NA 74.17 52.50∗

10 82.50 NA 76.66 75.00
11 76.67 NA 74.17 68.33
12 78.33 NA 71.67 65.83
13 66.33 NA NA 58.33
14 91.67 NA NA 89.17
15 71.67 NA NA 69.33

Table 6. Confusion matrix.

Predicted class

Class 1 Class 2 Class 3 Class 4

Known class Class 1 t p1 e12 e13 e14

Class 2 e21 t p2 e23 e24

Class 3 e31 e32 t p3 e34

Class 4 e41 e42 e43 t p4

3.4. Evaluation metrics

Along with accuracy and standard deviation, three more metrics, namely sensitivity (Se),
specificity (Sp) and normalized mutual information (MI) are applied to assess the performance
of features capable of delivering average of more than 50% while their minimum performance
is also more than 50%. These features are MAV, SSI, WAMP, MMAV1, IEEG, SSC and RMS.

According to the obtained results shown in figure 1, the SVM could perform better
compared to FCM in the current study. Therefore, only the SVM is considered for further
evaluation.

Se, Sp and MI, all three of them, demand for the confusion matrix which is shown in
table 6 for four classes of data. In many research works, a binary confusion matrix for binary
classification is reported while a multiclass confusion matrix is not commonly applied.

The confusion matrix shows how the predictions are made by the classifier. In the
confusion matrix, the rows correspond to the known class of the data and the columns
correspond to the predictions made by the model. The diagonal elements show the number of
correct classifications made for each class, and the off-diagonal elements show the errors.

For multiclass classifiers, Se corresponds to the true positive rate and is defined by
equation (3), and Sp corresponds to the true negative rate for each class (as in not being a
member of a certain class) and is given by equation (4):

Se1 = t p1/ (t p1 + e21 + e31 + e41) (3)
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Table 7. Average sensitivity (Se) and average specificity (Sp) for the selected features.

Feature Average Se Average Sp

WAMP 0.8583 0.9512
SSC 0.8389 0.9463
IEEG 0.7450 0.9150
RMS 0.7372 0.9124
SSI 0.7244 0.9081
MAV 0.7139 0.9046
MMAV1 0.7117 0.9039

Sp1 = tn1/(tn1 + e21 + e31 + e41), (4)

where tni is tn1 = t p2 + t p3 + t p4 + e23 + e32 + e24 + e42 + e34 + e43.

Table 7 shows the average Se and average Sp of the selected features vector for all subjects.
The highest Se and Sp belongs to WAMP followed by SSC, which is the same as what has
been obtained from the accuracy point of view. Interestingly, the rank of average Se and Sp
for each of the selected features is the same as their rank of accuracy.

Different from the conventional evaluation criteria using performance measures,
information-theory-based criteria present a unique beneficial aspect. Mutual information,
which compares the amount of information carried by the classifier output and by the true
class labels, is one of them (Schlögl et al 2002, 2003). Mutual information is an entropy
type quantity, which provides a measure of the statistical relationship between variables and
contains all the statistics of the related distributions. Thus, MI is a more general measurement
than a simple cross-correlation:

MIe (T,Y ) =
∑

T

∑
Y

Pe (T,Y ) log2
Pe (T,Y )

Pe (T ) Pe (Y )
(5)

MIe (T,Y ) =

∑m
i=1

∑m
j=1 Ci j log2

(
Ci j

Ci
∑m

i=1

(
ci j
n

)
)

∑m
i=1 Ci log2

(Ci
n

) . (6)

In equation (5), Y is the output data set and T is the target data set, and Pe (T; Y) is the
empirical probability density function of the joint distribution. When MI = 1, it indicates a
full correlation between Y and T, while when MI = 0, complete independence between Y and
T is expected.

In equation (6), Cij represents the sample number of the ith class, which is classified as
the jth class, and Ci is the total number for the ith class (Hu and Wang 2008).

MI for four classes of data is presented in table 8. For each feature–subject, the average
mutual information of the four aforementioned classes is calculated and presented. The last
row of the table represents the average mutual information per feature and the last column
represents the average mutual information per subject. Values in light gray point out the result
with maximum value and those in dark gray indicate the obtained results with minimum value
per feature.

Interestingly enough, subjects who could perform better than the others and some features
that could differentiate different classes’ data points better than the other features have higher
mutual information.

Although the information presented in table 8 is the analysis of the acquired EEG signal
after processing and classification from the entropy point of view, it is also another proof of
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Table 8. Average normalized mutual information for selected features.

Subject MAV SSI WAMP MMAV1 IEEG SSC RMS

1 0.0994 0.0520 0.6711 0.0368 0.0752 0.5024 0.0916
2 0.1337 0.1358 0.8880 0.1500 0.1536 0.9482 0.1625
3 0.6540 0.6549 0.7689 0.6110 0.5947 0.8215 0.7225
4 0.2762 0.3045 0.7312 0.4163 0.4149 0.6889 0.4711
5 0.4324 0.5234 0.9482 0.3731 0.6321 0.7962 0.5281
6 0.6278 0.6588 0.6544 0.7151 0.7057 0.7252 0.7040
7 0.3808 0.3037 0.7957 0.3876 0.3934 0.9694 0.3308
8 0.2592 0.3698 0.5582 0.2885 0.3929 0.4579 0.2978
9 0.8415 0.7319 0.8018 0.8364 0.8270 0.5147 0.8782

10 0.4359 0.4281 0.5150 0.5462 0.4979 0.6246 0.5577
11 0.5285 0.4904 0.6197 0.4506 0.4775 0.5454 0.5140
12 0.1853 0.1962 0.5953 0.1494 0.2794 0.4873 0.1701
13 0.2707 0.2733 0.5048 0.2954 0.3942 0.2689 0.3120
14 0.5114 0.5216 0.6181 0.4619 0.5132 0.7278 0.4420
15 0.2812 0.3218 0.5257 0.2431 0.2378 0.4465 0.2767
Average 0.3945 0.3977 0.6797 0.3974 0.4393 0.6350 0.4306
STD 0.2097 0.1991 0.1378 0.2185 0.2036 0.1988 0.2259

Table 9. Accuracy and mutual information for feature combination.

Subject Accuracy (%) Mutual information

1 90 0.6899
2 100 1
3 99.1667 0.9694
4 96.6667 0.9012
5 100 1
6 100 1
7 100 1
8 100 1
9 100 1

10 99.1667 0.9694
11 98.3333 0.9393
12 96.6667 0.8880
13 90 0.7466
14 93.3333 0.8147
15 88.3333 0.6862

the accuracy obtained by these feature–subjects as these analyses delivered closely relevant
results.

3.5. Assessment of feature combination

Classification is applied to the concatenation of the selected single features. These features are
MAV, SSI, WAMP, MMAV1, IEEG, SSC and RMS, which together make a 21-dimensional
feature vector. These features were capable of delivering an average of more than 50%, while
their minimum performance is also more than 50%. Regarding table 9, the performance is
significantly enhanced. In addition to accuracy, mutual information reached its perfect state
for several subjects. It should be noted that despite the considerable improvement obtained by
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applying combinations of features, single features are still preferred in some conditions due
to some practical usage or certain constrains such as speed of processing.

4. Conclusion and future work

Two modified time–domain features along with a comprehensive assessment of time–domain
features for a robust motor imagery EEG signal classification are proposed. The obtained results
show that in average, the SVM and FCM have more or less similar capability in recognizing the
selected mental tasks. The best collection of subsets is the one that minimizes the probability
of misclassification, which is investigated and discussed in this paper from the entropy point
of view by applying mutual information. Considering some of the characteristics of this
investigation would help understand the ability of combination of these feature–classifiers
better. No use of any filters for noise reduction, no elimination or rejection of signals partially,
no use of artifact removal and last but not least, no use of any biofeedback show how robust
some of these features could perform individually.

Feature selection in this work was based on their accuracy, and feature combination
applied the simplest method of concatenating the selected features. For future work, the other
methods of feature selection and more complicated techniques of feature combinations for
a better result are suggested. Another possibility is to examine fusion classifiers with these
time–domain features for the best possible result. Applying ensemble classifiers is another
potential future work for improving the general results in terms of applying a single feature.

Appendix

(A) Mean absolute value (MAV). Estimates the mean absolute value of each segment by adding
the absolute value of all the values xi –ith point, the current point of signal x, and dividing
it by the length of the segment (Englehart and Hudgins 2003):

MAVK = 1

N

N∑
i=1

|xi| . (A.1)

(B) Maximum value (MV). Maximum peak value (Bronzino 1995) refers to the maximum
absolute value of each considered segment, that is

xk = max |xi| . (A.2)

(C) Simple square integral (SSI). SSI (Phinyomark et al 2009) calculates the energy of the
EEG signal according to

SSIK =
N∑

i=0

(|x2
i |). (A.3)

(D) Waveform length (WL). WL is the cumulative length of the waveform over the segment.
It indicates a measure of waveform amplitude, frequency and duration, all within a single
parameter (Englehart and Hudgins 2003):

WLk =
N−1∑
i=1

|xi+1 − xi| . (A.4)
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(E) Modified mean absolute value1 (MMAV1). MMAV1 is an extension MAV using the defined
weighting function wi (Phinyomark et al 2009):

MMAV1k = 1

N

N∑
i=1

wi |xi|

w (i) =
{

1, 0.25N � i � 075N
0.5, otherwise

.

(A.5)

(F) Modified mean absolute value2 (MMAV2). MMAV2 has a continuous weighting function
of wi. This function is known as an improvement to the modified version of MAV
(Phinyomark et al 2009):

MMAV2K = 1

N

N∑
i=1

wi |xi|

w(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 0.25N � i � 0.75N
4i

N
0.25N > i

4(i − N)

N
0.75N < i.

(A.6)

(G) Integrated EEG (IEEG). IEEG computes the summation of the absolute values of EEG
signals (Huang and Chen 1999):

IEEGk =
N∑

i=1

|xi| . (A.7)

(H) Variance (VAR). It depicts the variation of each segment. Figure 3.23 is the distribution
of VAR, in the log-transformed form, in the feature space (Oskoei and Hu 2006):

VARk = 1

N

N∑
i=1

(xi − x̄)2 . (A.8)

(I) Standard deviation (STD). It is defined as below and represents the deviation of the mean
for each segment (Rechy-Ramirez and Hu 2011):

STDk =
√∑N

i=1 (xi − x̄)2

N − 1
. (A.9)

(J) Skewness. This parameter measures the degree of deviation from the symmetry of a
normal distribution. This measure has the value of zero when the distribution is completely
symmetrical, or some nonzero values when the EEG distribution is asymmetrical, with
respect to the baseline (Bronzino 1995):

Skewnessk =
∑N

i=1
(xi−x̄)3

N[∑N
i=1

(xi−x̄)2

N

]3/2
. (A.10)

(K) Kurtosis. This parameter reveals the peakedness or the flatness of each segment’s
waveform distribution. Figure 3.27 depicts the distribution of kurtosis, in the log-
transformed form, in the feature space (Bronzino 1995):

Kurtosisk =
∑N

i=1
(xi−x̄)4

N∑N
i=1

[
(xi−x̄)2

N

]2
− 3. (A.11)
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(L) Mean value (MV). This parameter calculates the MV of each segment (Bronzino 1995):

MAVK = 1

N

N∑
i=1

xi. (A.12)

(M) Root mean square (RMS). RMS is a common, widely used feature for variety of biosignals
(Bronzino 1995):

RMSk =
√√√√ 1

N

N∑
i=1

x2
i . (A.13)

In all the abovementioned equations, N is the length of the segment, k is the current
segment, xi is the current point of signal and i is the index of the current point.
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