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1. Introduction 

Multiexponential transient signals are particularly important due to their occurrences in 

many natural phenomena and human applications. For instance, it is important in the study 

of nuclear magnetic resonance (NMR) in medical diagnosis (Cohn-Sfetcu et al., 1975)), 

relaxation kinetics of cooperative conformational changes in biopolymers (Provencher, 

1976), solving system identification problems in control and communication engineering 

(Prost and Guotte, 1982), fluorescence decay of proteins (Karrakchou et al., 1992), 

fluorescence decay analysis (Lakowicz, 1999). Several research work have been reported on 

the analysis of multicomponent transient signals following the pioneer work of Prony in 

1795 (Prony, 1975) and Gardner et al. in 1959 (Gardner, 1979). Detailed review of several 

techniques for multicomponent transient signals’ analysis was recently reported in (Jibia, 

2010).  

Generally, a multiexponential transient signal is represented by a linear combination of 

exponentials of the form 

 ( ) exp( ) ( )
M

k k
k

S A n       (1) 

where M is the number of components, Ak and k respectively represent the amplitude and 

real-valued decay rate constants of the kth component and n() is the additive white 

Gaussian noise with variance n2. The exponentials in equation (1) are assumed to be 

separable and unrelated. That is, none of the components is produced from the decay of 

another component. Therefore, in determination of the signal parameters, M, Ak and k from 



 
MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 424 

equation (1), it is not sufficient that equation (1) approximates data accurately; it is also 

important that these parameters are accurately estimated. 

There are many problems associated with the analysis of transient signals of the form given 

in equation (1) due to the nonorthogonal nature of the exponential function. These problems 

include incorrect detection of the peaks, poor resolution of the estimated decay and 

inaccurate results for contaminated or closely-related decay rate data as reported in (Salami 

et.al., 1985). These problems become increasingly difficult when the level of noise is high. 

Although Gardner transform eliminated the nonorthogonality problem, it introduced error 

ripples due to short data record and nonstationarity of the preprocessed data. Apart from 

these problems, analysis of multiexponential signal is computationally intensive and 

requires efficient tools for its development and implementation in real-time. 

To overcome these problems, modification of Gardner transform has been proposed recently 

with Multiple Signal Classification (MUSIC) superposition modeling technique (Jibia et al., 

2008); with minimum norm modeling technique (Jibia and Salami, 2007), with homomorphic 

deconvolution, with eigenvalues decomposition techniques, and the Singular Value 

Decomposition (SVD) based-Autoregressive Moving Average (ARMA) modeling techniques 

(Salami and Sidek, 2000; Jibia, 2009). As reported in (Jibia, 2009), performance comparison of 

these four modeling techniques has been investigated. Though, all the four techniques were 

able to provide satisfactory performances at medium and high signal-to-noise ratio (SNR), 

the SVD-ARMA was reported to have the highest resolution, especially at low SNR. 

Hence, the development of SVD-ARMA based algorithm for multiexponential signal 

analysis using MATLAB software package is examined in this chapter. 

MATLAB provides computational efficient platform for the analysis and simulation of 

complex models and algorithms. In addition, with the aid of inbuilt embedded MATLAB 

Simulink block, it offers a tool for the integration of developed algorithm/model in an 

embedded application with little programming efforts as compared to the use of other 

programming languages (Mathworks, 2008). This functionality is explored in integrating the 

developed MATLAB-based algorithm into National Instrument (NI) Labview embedded 

programming tool. Hence, an integrated MATLAB-Labview software interface is proposed 

for real-time deployment of the algorithm. To this end, the analytical strength of MATLAB 

together with simplicity and user-friendly benefits of the National Instrument (NI), Labview 

design platforms are explored in developing an efficient, user-friendly algorithm for the 

real-time analysis of multiexponential transient signal. 

The rest of the chapter is organized as follows. Section 2 provides brief review of techniques 

for multiexponential signal analysis. The MATLAB algorithm development for the signal 

analysis is presented in section 3. The development of an integrated MATLAB-Labview real-

time software interface is then examined in section 4. Section 5 presents sample real-time 

data collection together with results and analysis. The chapter is concluded in section 6 with 

recommendation for future study. 
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2. Techniques of multiexponential transient signal analysis 

Several techniques have been reported for the analysis of transient multiexponential signal. 

They are classified as: (i) time domain or frequency domain, and (ii) parametric or 

nonparametric techniques. The main objective of these techniques in analyzing the 

multiexponentially decaying signals is to estimate the signal parameters as accurately as 

possible and to get better display of the signal spectra. Time-domain techniques constitute the 

oldest methods of multiexponential signal analysis prior to the advent of Gardner 

transformation technique (Gardner et al, 1959; Salami, 1985). Gardner transformation is one of 

the most important methods of the transient signal analysis based on spectral analysis. 

Generally, spectral analysis involves transformation of a time-domain signal to a frequency 

domain so that certain features of the signals that characterized them are easily discerned such 

as its decay constant, k and amplitude, Ak. In other words, it is the process of obtaining the 

frequency content (spectrum) of a signal (Proakis and Manolakis 1996). The spectral analysis 

approach is further categorized into nonparametric and parametric techniques. Nonparametric 

technique is a frequency-domain technique that obtains the signal spectra directly from the 

deconvolved data, while the parametric technique obtains the signal spectra indirectly by 

determining a finite set of parameters that defines a closed form mathematical model for the 

deconvolved data. Therefore the techniques of multiexponential transient signal analysis are 

sub-divided into time-domain, nonparametric frequency domain and parametric frequency 

domain techniques as shown in Figure 1 with their associated methods.  

Among the earliest time-domain technique is the peeling technique. However, this technique 

produces poor results when ( )S  contains more than two components. Other time-domain 

techniques such as Prony’s method and its variants produce better performance than the 

peeling technique, however they are very sensitive to noise (Smyth, 2002; Salami, 1995). The 

nonlinear least squares technique (Smyth, 2002) is computationally inefficient and the solution 

sometimes fails to converge, which means the estimate of the signal parameters cannot be 

accurately obtained.  

The nonparametric techniques of spectral analysis are introduced to overcome some 

limitations of the time-domain techniques. The Gardner transformation technique produces 

error ripples which obscure the real peaks of the spectrum due to the cutoff points. This 

technique is good in analyzing signal with high SNR. The fast Fourier transform (FFT) 

technique, which is an improvement over the original Gardner transformation produces 

improved resolution. However, the problem of error ripples still exists. The extension of this 

technique involving the use of digital signal processing and Gaussian filtering is sensitive to 

noise and its data range has to be limited to get accurate estimates of the signal parameters. 

Whilst the modified FFT technique is better than the previous methods, it often fails to 

estimate k correctly especially when the peaks are closely related. The differential technique 

(Swingler, 1977) provides some improvements over the existing techniques such as better 

resolution display but it is not suitable for analyzing noisy signal. Furthermore, modifying 

the FFT technique by incorporating integration procedure (Balcou,1981) does not produce 

better results as compared to the previous digital technique and the modified FFT 

technique. Moreover, this technique is still affected by error ripples.  
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Figure 1. Overview of Techniques for Multiexponential signal analysis 

Parametric techniques such as Autoregressive (AR), Moving Average (MA) and ARMA 

models are introduced to the analysis of multiexponential signals to alleviate the drawbacks 

of the nonparametric techniques. The AR modeling technique requires less computation 

than the ARMA modeling technique as its model parameters are relatively easy to estimate. 

However, it is sensitive to noise due to the assumed all-pole model. On the other hand, MA 

parameters are difficult to estimate and the resultant spectral estimates have poor 

resolution. Although, the ARMA modeling technique is much better in estimating noisy 

signal than the AR modeling technique, it requires a lot of computation. A detailed review 

of these techniques can be obtained in (Jibia, 2009; Salam and Sidek, 2000).  
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3. MATLAB-based Algorithm development 

The systematic process involved in the development of the MATLAB-based SVD-ARMA 

algorithm for multiexponential transient signal analysis suitable for real-time application is 

discussed in this section. Apart from performance evaluation and signal generation, the 

algorithm consists of five major steps: obtaining convolution integral of the exponential 

signal using modified Gardner transformation; signal interpolation using spline technique; 

generation of deconvolved data; SVD-ARMA modeling of the deconvolved data; and power 

spectrum computation to finally estimate the transient signal parameters. A brief summary 

of the steps involved are as shown in Figure 2, and briefly highlighted as follows: 

Step 1. Signal generation 

Generate the required signal, S() from MATLAB or from the fluorescence substances. For 

simulation data, MATLAB inbuilt function is used to generate the white Gaussian noise and 

the DC offset. 

 

Figure 2. Flowchart of the MATLAB-based algorithm for Multicomponent transient signal analysis 



 
MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 428 

Step 2. Signal preprocessing via Gardner transformation: 

This involves the conversion of the measured or generated signal ( )S   and ( )p   to y(t) and 

h(t) respectively using modified Gardner transformation (Salami and Sidek, 2003). This 

yields a convolution integral as subsequently described. 

In general, equation (1) is expressed as 

 
1

( ) ( ) ( ),
M

kk
k

S A p n   


    (2) 

where the basis function, p() = exp(-). This equation can also be expressed as 

 
0

( ) ( ) ( ) ( ),S g p d n    


    (3) 

where
1

( ) ( ).
M

kk
k

g A   


    

Both sides of equation (3) are multiplied by  in the modified Gardner transformation 

instead of only  in the original Gardner transformation. The value of the modifying 

parameter, is carefully chosen based on the criteria given by Salami (1995) to avoid poor 

estimation of the signal parameters because  modifies the amplitude of the signal. Salami 

(1995) suggested to use 0 1   in the analysis of multiexponential signals. According to 

Salami (1985), the choice of   can lead to improved signal parameters estimation as it 

produces noise reduction effect. The nonlinear transformation  = e-r and  = et are applied to 

equation (3), resulting in a convolution integral of the form 

 ( ) ( ) ( ) ( ),y t x h t d v t  




    (4) 

where the output function, y(t) = exp(t) S{exp(t)}, the input function, x(t) = exp{(-1)t}g(e-t), 

the impulse response function of the system, h(t) = exp(t)p(et) and the additive noise, v(t) = 

exp(t)n(et).  

The discrete impulse response function, h[n] is obtained by sampling αp(λk) at 1/Δt Hz. 

Later, H(k) is obtained from the discrete Fourier transform (DFT) of h[n]. Next, equation (4) 

is converted into a discrete-time convolution. This is done by sampling y(t) at a rate of 1/Δt 

Hz to obtain  

 
max

min

[ ] [ ] [ ] [ ],
n

m n

y n x m h n m v n


      (5) 

where the total number of samples, N equals nmax -nmin+1, both nmax and nmin represent 

respectively the upper and lower data cut-off points. The criteria for the selection of these 

sampling conditions have been thoroughly discussed by Salami (1987) and Sen (1995) and 
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these are not discussed further here. Equation (5) forms the basis of estimating the signal 

parameters since ideally x(n) can be recovered from the observed data by deconvolution. It 

is necessary to interpolate the discrete time convolution of y[n] since the log samples, n = 

exp(n∆t) are not equally spaced.  

Step 3. Cubic spline Interpolation  

The discrete-time signal y[n] obtained in (5) consists of non-equally spaced samples which 

would be difficult to digitally process. A cubic interpolation is therefore applied to y[n] 

using MATLAB function ‘spline’ to obtain equally spaced samples of y[n]. 

Step 4. Generation of deconvolved data 

In this stage, deconvolved data is generated from y[n] using optimally compensated inverse 

filtering due to its ability to handle noisy signal when compared to conventional inverse 

filtering (Salami,1995).  

Conventionally, this is done by taking the DFT of equation (5) to produce: 

 ( ) ( ) ( ) ( )Y k X k H k V k     (6) 

The deconvolved data, ( )X k


 can be obtained by computing Y(k)/H(k), that is 

 
( ) ( )

( ) ( ) 0 1
( ) ( )

Y k V k
X k X k for k N

H k H k
     


  (7) 

where Y(k), X(k), H(k) and V(k) represent the discrete Fourier transform of y(n), x(n), h(n) and 

v(n) respectively. This inverse filtering operation is called the conventional inverse filtering. 

It yields deconvolved data with decreasing SNR for increasing values of k. Therefore, the 

accuracy of ( )X k


 deteriorates when the noise variance level is high. 

To overcome this problem, an optimally compensated inverse filtering is introduced. In this 

approach, H(k) is modified by adding an optimally selected value,  into it. This procedure 

is done according to Riad and Stafford (1980) by initially designing a transfer function, HT (k) 

that yields a better X


(k) in equation (7), where HT (k) is given by: 

 
2

( )
( ) ,

| ( )|
T

H k
H k

H k 




  

  (8) 

where   denotes the complex conjugate. Substituting equation (8) into equation (7) yields 

 
2

( ) ( )
( ) ,

| ( )|

Y k H k
X k

H k 



  

  (9) 

which is referred to as the optimally compensated inverse filtering. It is noted that a small 

value of μ has a very little effect in the range of frequency when |H(k)|2 is significantly 
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larger than  . However, if|H(k)|2 is very small, the effect of μ on the deconvolved data is 

quite substantial, that is   tends to make ( )X k


 less noisy. Therefore, μ puts limit on the 

noise amplification because the denominator becomes lower bounded according to Dabóczi 

and Kollár (1996). The parameter μ is carefully selected according to the SNR of the data to 

obtain good results. The choice of the optimum value of μ according to Salami and Sidek 

(2001) is best determined by experimental testing. 

Equation (9) shows one-parameter compensation procedure, however, multi-parameter 

compensation is considered in this study. Thus, a regularization operator L(k) is introduced 

into (8), that is 

 
2 2

( )
( )

( ) ( )

H k
F k

H k L k




   

   (10) 

where  is the controlling parameter and the regularization operator, L(k) is the discrete 

Fourier transform of the second order backward difference sequence. |L(k)|2 is given as 

 2 4| ( )| 16sin ,
k

L k
N

 
  

 
 (11) 

where N is the number of samples. Using both the second and fourth order backward 

difference operations in equation (10) yield 

 
2 2 4

( )
( )

( ) ( ) ( )

H k
F k

H k L k L k  




     

 (12) 

where 
4

( )L k denotes the fourth order backward difference operator and ,  and  are the 

varied compensation parameters to improve the SNR of the deconvolved data. 

Unwanted high frequency noise can still be introduced by this optimally compensated 

inverse filtering which can make some portion of ( )X k


unusable. Therefore, a good portion 

of ˆ ( )X k denoted as f (k), is given as 

 
1

( ) exp( 2 ln ) ( ),
M

i i
i

f k B j k f V k 


     (13) 

where 1  k  2Nd+1, ܤ௜ = ) ௜ఈ, Nd 	௜/ܣ / 2) 1N  , Nd is the number of useful deconvolved data 

points, N is the number of data samples and V(k) is the noise samples of the deconvolved data. 

Equation (13) is interpreted as a sum of complex exponential signals. The number of 

deconvolved data points, Nd is carefully selected to produce good results from f (k). 

Step 5. Signal parameters estimation using SVD-ARMA modeling 

SVD-ARMA algorithm is applied to f(k) to estimate the signal parameters M and k. as it 

provides consistent and accurate estimates of AR parameters with minimal numerical 
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problem which is necessary for real-time application. In addition, it is a powerful 

computational procedure for matrix analysis especially for solving over determined system 

of equations. The detailed mathematical analysis of this algorithm is reported in (Salami, 

1985). 

Generally, the ARMA model assumes that f (k) satisfies the linear difference equation 

(Salami 1985) 

 
1 1

( ) ( ) ( ) ( ) ( )
p q

i i

f k a i f k i b i V k i
 

        (14) 

where V(k) is the input driving sequence, f(k) is the output sequence, a[i] and b[i] are the 

model coefficients with AR and MA model order of p and q respectively. Usually, the white 

Gaussian noise becomes the input driving sequence in the analysis of exponentially 

decaying transient signals.  

One of the most effective procedures for estimating these model parameters is by solving a 

modified Yule-Walker equation (Kay and Marple 1981). This procedure is subsequently 

discussed. 

Equation (14) is multiplied by f *(k-m) and taking the expectation yields: 

 
1 0

( ) [ ] ( ) [ ] ( ),
p q

ff ff
n n

R k a n R k n b n h k m
 

         (15) 

where Rff (k) is the autocorrelation function of ( )f k  and h(k) is the impulse response function 

of the ARMA model. Next, considering the AR portion of equation (15) leads to the 

modified Yule-Walker equation       

 
1

( ) [ ] ( ) 0; 1.
p

ff ff
n

R k a n R k n k q


        (16) 

Equation (16) may not hold exactly in practice because both p and q are unknown prior to 

analysis and Rff (k) has to be estimated from noisy data. This problem is solved by using an 

SVD algorithm. This algorithm is used by first expressing equation (16) in matrix form as Ra 

= e with R having elements ( , ) ( 1 ),ff er i l R q i l     where 1  i  r ; 1  l  pe + 1. Note that 

both pe and qe are the guess values of the AR and MA model order respectively, a is a pe  1 

and e is a r  1 error vector with r > pe. The SVD algorithm is applied to R to produce 

  R = UVT = 

1

ep
H

n n n
n

u v

    (17) 

where the r  (pe+1) unitary matrix U = [u1 u2 … 1epu  ], (pe+1)  (pe+1) unitary matrix V = [v1 v2 

… 1epv  ] and  is a diagonal matrix with diagonal elements ( 1,  2 … 1ep  ). These diagonal 

elements are called singular values and are arranged so that  1 >  2 > … > 1ep  > 0. Only the 
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first M singular values will be nonzero so that  M+1 =  M+2 = … = 1ep  = 0. However,  M+1   

M+2  …  1ep   0 due to noise contamination. The problem is solved by constructing a 

lower rank matrix RL from R using the first M singular values, that is 

 RL = UMMVMH

1

,
M

H
n n n

n

u v


    (18) 

where UM, M and VM are the truncated version of U,  and V respectively. The AR 

coefficients are then estimated from the relation a = -RL#r, where r corresponds to the first 

column of RL and RL# is given as    

 RL# 1

1

.
M

H
n n n

n

u v 


    (19) 

The estimated AR coefficients are then used to generate the residual error sequences: 

 
0 0

( ) [ ] * [ ] ( )
e ep p

ff
l m

k a l a m R k m l
 

     (20) 

from which the actual MA parameters are obtained directly from equation (20). However, 

MA spectra can be obtained from the DFT of the error sequences, (k) . An exponential 

window is applied to (k) to ensure that the MA spectra derived from the error sequences 

are positive definite. Next, the ARMA spectrum is computed from 

 
2

( )

( )
( )

e

e

p
k

k p

f

k z

S z
A z

 




   (21) 

and the desired power distribution of x(t), denoted as Px(t) is obtained by evaluating Sf (z) on 

the unit circle exp 2
t

z j
N t

 
  

 
, that is:   

 2
2

exp 1

( ) ( ) ( ln ).
M

x f k kj t
z kN t

P t S z B t         

     (22) 

Eventually, M and ln k are obtained from Px(t). 

Step 6. Graphical presentation of output 

Power distribution graph has been used to display the results of multiexponential signal 

analysis. This is computed from the power spectrum of the resulting output signal from 

SVD-ARMA modeling method as shown in equation (21). 

Step 7. Performance evaluation 

The efficiency of the algorithm with SVD-ARMA modeling technique in estimating k 

correctly is determined by the Cramer-Rao lower bound (CRLB) expressed as: 
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 CRLB ( k )=
3/2 2

3

6(1 0.7( ) )
,kN

N SNR


 (23) 

where N is the number of data points, the CRB(k) is the CRLB for estimating k and SNR 

equals to ܣ௞ଶ  divided by the variance of the white Gaussian noise. 

The Cramer-Rao lower bound will determine whether the estimator is efficient by 

comparing the variance of the estimator, var( k


) with the Cramer-Rao lower bound. 

Variance that approaches the CRLB is said to be optimal according to Kay and Marple (1981) 

and Sha’ameri (2000). Consequently, the closer the variance of the estimator is to the CRLB, 

the better is the estimator. 

A MATLAB-mfile code has been written to implement the steps 1 to 6 described above, 

details of this have been thoroughly discussed in (Jibia, 2009). 

4. Integrated MATLAB-labview for real-time implementation 

This section discusses the development of proposed integrated Labview-MATLAB software 

interface for real-time (RT) implementation of the algorithm for multicomponent signal 

analysis as described in section 3. Real-time signal analysis is required for most practical 

applications of multicomponent signal analysis. In this study, reference is made to the 

application to fluorescence signal analysis. A typical multicomponent signal analyzer 

comprises optical sensor which is part of the spectrofluorometer system, signal 

conditioning/data acquisition system, embedded processor that runs the algorithm in real-

time, and display/storage devices as shown in Figure 3. National Instrument (NI) real-time 

hardware and software are considered for the development of this system due to its ease of 

implementation.  

 

Figure 3. Block diagram of the multicomponent signal analyzer prototype. 

4.1. Labview real-time module and target 

The Labview real-time module (RT-software) together with NI sbRIO-9642 (RT-hardware) 

has been adopted in this study. The Labview Real-Time software module allows for the 

creation of reliable, real-time applications which are easily downloaded onto the target 

hardware from Labview GUI programming tool. 
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The NI sbRIO-9642 is identical in architecture to CompactRIO system, only in a single circuit 

board. Single-Board RIO hardware features a real-time processor and programmable FPGA 

just as with CompactRIO, and has several inputs and outputs (I/O) modules as shown in 

Figure 4. 

System development involves graphical programming with Labview on the host Window 

computer, which is then downloaded and run on real-time hardware target. Since the 

algorithm has been developed with MATLAB scripts, an integrated approach was adopted 

in the programme development as subsequently described. 

 

 

 

 

 

Figure 4. NI sbRIO-9642 for real-time hardware target 

4.2. MATLAB-labview software integration 

The developed algorithm with MATLAB scripts was integrated inside Labview for real-time 

embedded set-up as shown in Figure 5. Labview front-panel and block diagrams were 

developed with inbuilt Labview math Scripts to run the MATLAB algorithm for the analysis 

of multicomponent signals. The use of Labview allows for ease of programming, and real-

time deployment using the Labview real-time module described in section 4.1. Also, it 

provides a user friendly software interface for real-time processing of the fluorescence 

signals. 

As shown in Figure 5, the sampled data produced by the spectrofluorometer system are pre-

processed by the NI-DAQ Cards. These signals are then read by the embedded real-time 

software, analyze the signals and display the results in a user friendly manner. The user is 

prompted to enter the number of samples to be analyzed from the front-panel using the 

developed SVD-ARMA algorithm. 
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Figure 5. Block Diagram of the real-time set-up 

Generally, the developed algorithm with MATLAB scripts was integrated inside Labview 

for real-time embedded set-up as follows: 

i. Pre-simulation of the MATLAB algorithm inside embedded MATLAB Simulink block: 

this requires re-structuring of the codes to be compatible for embedded Simulink 

implementation, and hence deployment inside Labview MathScript. Figure 7 shows the 

MATLAB Simulink blocks configuration with embedded MATLAB function together 

with cross-section of the algorithm. The DATA with time vector is prepared inside the 

workspace and linked to the model input. Figure 10 (a-f) shows the simulation results 

with experimental data described in section 5. 
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Figure 6. Lab view Block Diagram 

 

Figure 7. Embedded MATLAB set-up for algorithm simulation 
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ii. Labview programming: Development of Labview front-panel and block diagram is as 

shown in Figure 4. In the block diagram programming, the Labview MathScript node is 

employed to integrate the MATLAB codes in the overall Labview programme. The 

script (Figure 8) invokes the MATLAB software script server to execute scripts written 

in the MATLAB language syntax 

 

Figure 8. NI Labview MATLAB script nodes 

iii. The integrated software interface is evaluated with the real-time fluorescence data 

collected from a spectrofluorometer. 

5. Sample collection, results and discussion 

Due to unavailability of spectrofluorometer system that can be directly linked with the set-

up, sampled data collected from fluorescence decay experiment conducted using 

Spectramax Germini XS system were used to test the performance of the integrated system. 

The schematic diagram of the spectrofluorometer operation is shown in Figure 9, and 

itemized as follows: 

Step 1. The excitation light source is the xenon flash lamp. 

Step 2. The light passes through the excitation cutoff wheel. This wheel reduces the 

amount of stray light into the movable grating.  

Step 3. The movable grating selects the desired excitation wavelength. Then, this excitation 

light enters a 1.0 mm diameter fiber. 

Step 4. This 1.0 mm diameter fiber focuses the excitation light before entering the sample in 

the micro-plate well. This focusing prevents part of the light from striking adjacent 

wells. 

Step 5. The light enters the wheel and if fluorescent molecules are present, the two mirrors 

focus the light from the well into a 4.0 mm optical bundles. 

Step 6. The movable, focusing grating allows light of chosen emission wavelength to enter 

the emission cutoff wheel. 

Step 7. This emission cutoff wheel will further filter the light before the light enters the 

photomultiplier tube. 

Step 8. The photomultiplier tube detects the emitted light and passes a signal to the 

instrument’s electronics which then send the signal to the data acquisition system 

inside the spectrofluorometer. 

Three intrinsic fluorophores (Acridine Orange; Fluorescein Sodium and Quinine) were used 

in the experiment. The details of the substances are given in Table 1. 
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 Acridine Orange Fluorescein Sodium Quinine 

Molecular formula 

Manufacturer 

Molecular weight 

Purity by HPLC 

Form 

Colour 

Solubility in water 

Solutility in ethanol 

C17H12ClN3 

Merck 

301.8g/mol 

99.1% 

Solid 

Orange red 

28g/l 

Soluble 

C20H10Na2O5 

Merck 

376.28 

Extra pure 

Solid 

Reddish brown 

500g/l 

140g/l 

C20H24N2O2 

Merck 

324.43 

Extra pure 

Powder, 

White 

0.5g/l 

1200g/l 

Table 1. Characteristics of the fluorophores samples 

The simulation results for Acridine orange, Fluorescein Sodium, Quinine, Quinine plus 

Arcridine, Fluorescein Sodium plus Acridine orange, and Fluorescein Sodium plus Acridine 

orange plus Quinin in water are shown in Figure 10 (a-f) respectively.  

Figure 11 to Figure 13 show the sample of results obtained from the integrated MATLAB-

Labview real-time software which has been developed. Both results of simulation and real-

time software interface yield accurate estimates of the fluorescence data as shown in Figure 10-

Figure 13, and presented in Table 2. The singular values for each of the samples combination 

are given in Table 3. The results indicate accurate determination of the constituent samples 

 

Figure 9. Schematic diagram of the SPECTRAMAX Gemini Spectrofluorometer operation (SPECTRAmax®) 
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Figure 10. Sample simulation results with embedded MATLAB function  

(a) Acridine orange (b) Fluorescein Sodium 

(c) Quinine (d) Quinine plus Arcridine 

(e) Fluorescein Sodium plus Acridine (f) and Fluorescein Sodium plus Acridine plus Quinin 
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6. Conclusion/Future study 

The development of MATLAB-based algorithm for real-time analysis of multicomponent 

transient signal analysis based on SVD-ARMA modeling technique has been presented in 

this chapter. To enhance real-time interface and rapid prototyping on target hardware, 

complementary benefits of MATLAB and Labview were explored to develop real-time 

software interface downloadable into single board computer by NI Labview. In the absence 

of the spectrofluorometer system, the developed user friendly software for real-time 

deployment was validated with the collected real-time data. The obtained results indicate 

the effectiveness of the proposed integrated software for practical application of the 

proposed algorithm.  

Future direction of this research will be directed towards development of customized 

spectrofluorometer sub-system that can be directly integrated to the overall system. This 

will eventually facilitate direct application of the developed algorithm in practical 

applications involving transient signal analysis. Also, other algorithms based on 

homomorphic and eigenvalues decomposition developed by the authors in similar study are 

to be made available as option on the user interface.  

 

 

 

 

 

Mixture Expected value SVD-ARMA

 

Percentage error 

Acridine orange 0.5978 0.625 4.55 
 

Fluorescein Sodium 
 

-1.4584 
 

-1.438 
 

1.40 
 

Quinine 
 

-0.6419 
 

-0.625 
 

2.63 

Acridine Orange + 

 

Fluorescein Sodium 

0.6539 0.6563 0.37 

 

-1.4584 

 

-1.438 

 

1.40 

Acridine Orange 

 

+Quinine 

0.7750 0.761 1.81 

 

-0.5539 

 

-0.5313 

 

4.08 

 

Acridine Orange + Fluorescein Sodium 

+Quinine 

0.5105 0.5325 4.31 

-0.6152 -0.5938 3.48 

-1.5260 -1.533 0.46 

 
 

 

 

Table 2. Estimated Log of decay rates and percentage error from fluorescence decay experiment ( In ) 
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Table 3. Singular values for SVD-ARMA using experimental data 

 

 

Figure 11. Power distributions for Quinine in water  
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Figure 12. Power distribution Quinine plus Arcridine Sodium in water 

 

  

Figure 13. Power distribution for Acridine Orange + Fluorescein + Sodium and quinine in water 
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