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A B S T R A C T   

To characterize the performance of nanofluids for heat transfer applications in solar systems, an accurate esti
mation of their specific heat capacity (SHC) is of paramount importance. To this end, having such properties of 
nanofluids via computational approaches has gained attention as an effective method to eliminate the time- 
consuming process of experimental investigations. This study focuses on modeling the SHC of different 
carbon-based and metal oxide-based nanoparticles dispersed in various base fluids. Herein, we propose a novel 
data-driven dynamic model based on the Gaussian process regression (GPR) technique in comparison with the 
random forest (RF) approach and generalized regression neural network (GRNN) to predict the SHC of nano
fluids. The developed models employ the solid volume fraction (ϕ), temperature (T), mean diameter of nano
particle (Dp), and SHC of base fluid (CBase

P ) as the input parameters. The data has been collected from 10 reliable 
references. The results showed that the GPR model (R=0.99974, RMSE=0.01506 J/K.g) shows superior per
formance than the results of the RF (R=0.99761, RMSE=0.04598 J/K.g) and GRNN (R=0.99563, 
RMSE=0.06085 J/K.g). The results proved that the developed model would accurately estimate the SHC of the 
studied nanofluids. In addition, the sensitivity analysis of the dependence of input variables on the SHC of 
nanofluids revealed that the mean diameter of nanoparticles and the SHC of base fluid are the major critical 
factors in the determination of SHC of nanofluids.   

1. Introduction 

Nanofluids are a product of the homogenous suspension of nano
particles in conventional fluids. The resulting fluid mixture possesses 
enhanced thermo-physical properties such as specific heat capacity 
(SHC), density, viscosity, thermal conductivity, and so forth [1,2]. The 
small size and large surface to volume ratio of nanoparticles can be the 
effective factors to enhance the thermal conductivity of nanofluids. In 
addition, they have the capability to move easily in flow-channels with 
less particle momentum and have a higher heat transfer rate than con
ventional fluids [3,4]. 

In recent years, the number of published research on nanofluids has 

increased enormously. The capability of nanofluids in enhancing the 
heat transfer makes them the desired material of choice for energy- 
saving applications [5,6]. Thus, they have the capability to reduce en
ergy costs and to increase the market size of nanofluid based technolo
gies exponentially to over 2 billion dollars annually [7]. For example, 
the use of nanofluids in electricity generation has improved chiller ef
ficiency by 1 %, thereby saving an estimated 320 billion kWh of elec
tricity equivalent to 5.5 million barrels of oil annually [7]. Certainly, 
nanofluids are significant materials for effective energy management 
capable of reducing global warming and energy crisis [6]. Moreover, 
they continuously receive massive attention from solar energy re
searchers owing to its contribution in the areas of solar thermoelectric 
devices [8], solar water heaters [9,10], solar collectors [11,12], 

Abbreviations: CNT, carbon nanotube; EG, ethylene glycol; MWCNT, multi-walled carbon nanotube RD, relative deviation; SHC, specific heat capacity; W, water. 
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solar-geothermal combined cooling, heating, and power systems 
[13–15], and so forth. Unlike conventional heat transfer fluids, nano
fluids are better absorbers of radiation over the ultra-violet and visible 
light region of the solar radiation spectrum. This feature enables them as 
a suitable alternative for solar energy applications; they improved solar 
radiation absorption in the direct absorption solar collectors (DASC) 
system [16–18]. Nanoparticles are mainly composed of metals, 
non-metals, metal oxide, and other compounds [19–22]. The choice of 
nanoparticle/base fluid combination for the production of nanofluid is 
governed by some crucial factors like chemical stability, toxicity, ther
mal properties, cost, availability, and compatibility [23]. Nanofluids 
have been successfully deployed in many technological applications as 
they are generally preferred because of their relative cheapness [24], 
ease of production, chemical stability, and poses a lesser particle settling 
problems during production [25,26]. Nanofluids are utilized for heat 
transfer purposes in solar thermal systems [27–29] and have been 
prominently applied in solar collectors because of its ability to enhance 
the solar collector’s optical properties. Tubular solar collectors have 
employed Al2O3/water, ZnO/water, and MgO/water as nanofluids [17], 
evacuated tube solar collectors use SWCNT/water [30] and 
MWCNT/water [31], DASC uses Sand/PG-water [32] and 
ZnO/PG-water nanofluid [33], flat plate solar collector uses Cu/water 
[34], and Cu-synthesized/EG [35], and CuO/water nanofluid [7], and 
many more. 

The specific heat capacity of nanofluids is a measure of the capacity 
of the nanofluid to retain heat. This makes it an essential thermal 
property that defines the nanofluid. Moreover, it helps in quantifying the 
thermal characteristics of any system by using the thermal diffusivity [6, 
36–41], as evident in Eqs. (1) and (2). It occupies a significant position in 
the design of heat management systems and heat transfer applications. It 
helps in quantifying effective heat energy management strategies that 
will optimize energy conservation and minimize energy loss in a system 
[42]. Hence, its accurate determination becomes expedient. The rela
tionship between the SHC and thermal conductivity can be expressed as 
follows: 

α =
κ

ρCnf
P

(1)  

whereα, κ, ρ, Cprepresent thermal diffusivity, thermal conductivity, 
density, and SHC, respectively. 

The most popular theoretical SHC prediction models are model (I) 
and model (II), which are based on the concepts of mixing theory for 
ideal gas mixtures and the first law of thermodynamics. For this reason, 
these models are known as mixing model (I) and thermal equilibrium 
model (II) [43–46]. The mixing model comprised the relationship be
tween the SHC of nanofluid, nanoparticles, and base fluid as follows [43, 

47]: 

CPI = ϕ Cnp
P + (1 − ϕ)CBase

P (2)  

where ϕ, Cnf
P , Cnp

P , and CBase
P represent the nanoparticle volume fraction, 

SHC of nanofluid, SHC of nanoparticles, and SHC of the base fluid, 
respectively. The nanoparticle volume fraction can be converted to the 
corresponding mass fraction using the following equation: 

ϕ =
w

w +
(
ρnp
/

ρbf
)
(1 − w)

(3) 

For better explanation of the experiment conditions, model (I), 
which is based on the thermal equilibrium between nanoparticles and 
the base fluid, can also be expressed in terms of densities and volume 
fraction in the form of model (II) as follows [43–45,48]. 

CPII =
φρnpCnp

P + (1 − φ)ρbf CBase
P

φCnp
P + (1 − φ)ρbf

, ρnf = (1 − ϕ)ρbf + ϕρnp (4)  

where ρnf , ρnp, ρbf represent the nanofluid density, nanoparticle density, 
and base fluid density, respectively. 

Nomenclature 

CBase
P specific heat capacity of base fluid (J/K.g) 

Cnf
P specific heat capacity of nanofluid (J/K.g) 

Cnp
P specific heat capacity of nanoparticle (J/K.g) 

Er relative deviation 
Dp particle diameter, nm 
Iw index of agreement 
m mass (g) 
MAPE mean absolute percentage error 
Pc Pearson correlation coefficient 
R correlation coefficient 
RAE relative absolute error 
RMSE root mean square error (J/K.g) 
SI scatter index 

T temperature, (K) 

Greek 
ϕ nanoparticle volume fraction (-) 
ρnf bulk fluid density, g/cm3 
ρnp density of the nanoparticles, g/cm3 
ρbf density of the base fluid, g/cm3 
κ thermal diffusivity (m2/s) 

Subscripts 
bf base fluid 
i nanoparticle ID 
nf nanofluid 
np nanoparticle 
ω nanoparticle mass fraction  

Fig. 1. The schematic view of nanofluids application in the solar energy sys
tems and influence factor in Specific heat capacity of nanofluids. 
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Pak and Cho, as a pioneer, conducted the experimental investigation 
on the SHC of Al2O3/Water and TiO2/Water estimation [43]. Over the 
last decades, several research efforts have experimented with a variety 
of nanofluids and proved that the SHC of nanofluids is dependent upon a 
number of physical and chemical properties such as the nanoparticle 
size (Dp), volume fraction (ϕ), PH, SHC of base fluid (CBase

P ), SHC of 
nanoparticle (Cnp

P ), temperature, and so forth [41,49,50]. Fig. 1 depicted 
the schematic view of the effective factors that govern the SHC of 
nanofluids estimation and nanofluids application in solar energy appli
cations. Besides, a summary of the experimental investigation of nano
fluids’ SHC is presented in Table 1. 

Consequent to the myriad of factors affecting the SHC of nanofluids, 
their experimental investigation can be rigorous, taking into account the 

number or combination of factors to be considered, hence affecting the 
timely determination of the SHC for heat transfer applications [51]. 
Moreover, other difficulties, such as the high cost of nanofluids and the 
sensitivity of synthesis and measurement, poses setbacks to the timely 
measurements of the SHC [52]. In other words, to avoid performing 
experimental bottlenecks, especially in the face of limited resources, 
experimental-based models have proven to be a reliable route. The two 
main models that have successfully predicted the SHC of nanofluids are 
the mixing rule model [47] and the thermal equilibrium model [48], 
generally referred to as model (I) and model (II), respectively. Previous 
studies have simultaneously employed models (I) and (II) in the deter
mination of the SHC for nanofluids involving different 
nanoparticles-base fluids combinations, such as Al2O3 [53], MgO, ZnO, 
and SrO2 dispersed in ethylene glycol (EG)-water [24]. In most of these 
studies, model (II) resulted in a highly accurate estimation with exper
imental data as compared with the model (I). However, model (II) gave 
poor results for some nanofluids [51,52,54]. 

Inaccuracies associated with the numerical models in the estimation 
of the SHC is caused by the underlying assumptions between model 
inputs and target variable coupled with their inability to account for the 
anomalous nature of nanofluids. As a result, machine learning (ML) 
techniques are employed because of their robust predictive accuracy. So 
far, ML models have been developed to predict thermal conductivity [4, 
65–71], viscosity [67,72–75], and SHC [76–78] using artificial intelli
gence (AI) models: Artificial Neural Network (ANN) [74,79,80] and 
Support Vector Regression (SVR) [78,81]. In the case of machine 
learning studies, the employed algorithms extrapolate data using the 
nanofluids physico-chemical properties as model inputs and the ther
mophysical properties as the target variable such that it learns the 
pattern in the data and establish a relationship which can be explored for 
future determination of the thermophysical property of choice [82,83]. 
Alade et al. [77] made the first attempt to estimate the SHC of nanofluids 
by using the ML model. In their research, support vector regression was 
developed by a genetic algorithm (GA) to estimate the SHC of Al2O3/
water nanofluids [77]. Other machine learning studies deployed in the 
prediction of SHC of nanofluids are given in Table II. ML models have 
been deployed to estimate the SHC of metal oxide-based nanofluids. 
Such studies include the application of SVR techniques for predicting the 
SHC of CuO-based nanofluids [84,85] and Al2O3-based nanofluids [50, 
52]. 

In this study, the Gaussian process regression (GPR) technique is 
used in comparison with the random forest (RF) approach and gener
alized regression neural network (GRNN) to predict the SHC of nano
fluids. These machine learning techniques have been used to develop 
models capable of estimating nanofluids parameters. The GPR gave a 
successful estimation of the thermal conductivity of Al2O3/H2O [86,87], 
CuO/H2O [86,87], and Battery calendar aging prediction [88,89]. Just 
recently, the RF approach has been applied to model the viscosity of 
metal oxide-based nanofluids, such as SiO2, TiO2, ZnO, MgO, and so 
forth [90]. Additionally, GRNN was used to estimate the pool boiling 
heat transfer coefficient of TiO2/water [91]. 

Based on the presented literature above, the lack of having accurate 
and reliable research on SHC of a wide variety of nanofluids, including 
metal oxides and carbon dispersed in various base fluids using AI-based 
methodologies of GPR, RF, and GRNN, is greatly felt. Thus, in this study, 
it is tried to fill this gap in the available literature. The results of the 
proposed GPR approach were compared to the RF, GRNN, and existing 
correlations. Moreover, the authors’ survey on the available literature 
showed that these three ML approaches had not been applied yet to 
develop a computational model to estimate the SHC of nanofluids. The 
developed models were validated using several performance metrics, 
efficient graphical devices, and expert error analysis. The general 
framework of the intelligent system for the prediction of SHC of nano
fluids is depicted in Fig. 2. 

Table 1 
Experimental investigation of nanofluids’ SHC.  

Nanofluids Base fluid Studied factors Equipment Reference 

Al2O3 water- 
Ethylene 
glycol 

Nanoparticle 
volume fraction, 
temperature 

Micro DSC II 
micro- 
calorimeter 

Barbes et al. 
[41] 

Al2O3, 
ZnO, 
SnO 

Ethylene 
glycol water, 
water 

Nanoparticle 
volume fraction, 
temperature 

Unspecified Vajjha et al. 
[55] 

Al2O3 water Nanoparticle 
volume fraction 

Differential 
scanning 
calorimeter 
(DSC) 

Zhou et al.  
[56] 

Al2O3 water- 
Ethylene 
glycol 

Nanoparticle 
volume fraction, 
temperature 

Differential 
scanning 
calorimeter 
(DSC) 

Elias et al.  
[57] 

CuO water- 
Ethylene 
glycol 

Nanoparticle 
volume fraction, 
temperature 

Micro DSC II 
micro- 
calorimeter 

Barbes et al. 
[49] 

Cu Ethylene 
glycol 

pH, temperature Modulated 
temperature 
Differential 
scanning 
calorimeter 
(MTDSC) 

Robertis 
et al. [58] 

Metal, 
metal 
oxides 

poly-a olefin, 
mineral oil, 
ethylene 
glycol, the 
mixture of 
water and 
ethylene 
glycol, and 
calcium 
nitrate 
tetrahydrate 

Nanoparticle 
mass fraction, 
the heat 
capacity of the 
base fluid 

Differential 
scanning 
calorimeter 
(DSC) 

Starace 
et al. [59] 

MWCNT water- 
Ethylene 
glycol 

Nanoparticle 
volume fraction, 
temperature 

Differential 
scanning 
calorimeter 
(DSC) 

Kumaresan 
et al. [60] 

MWCNT distilled 
water 

Nanoparticle 
volume fraction, 
temperature 

Differential 
scanning 
calorimeter 
(DSC) 

Sabiha et al. 
[61] 

TiO2, 
Al2O3, 
Al 

DI-water, 
Ethylene 
glycol, 
Engine-oil 

Nanoparticle 
volume fraction 
and type, base 
fluid type 

Double-hot 
wire technique 

Murshed 
et al. [62] 

TiO2, 
Al2O3 

Water, 
ethylene 
glycol 

Nanoparticle 
concentration, 
temperature 

Differential 
scanning 
calorimeter 
(DSC) 

Nieh et al.  
[63] 

β-CD 
MWCNT  

Ethylene 
glycol 

Nanoparticle 
concentration, 
Nanoparticle 
volume fraction, 
temperature 

Simultaneous 
thermal 
analyzer 

Li et al.  
[64]  
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2. Methodology 

2.1. Gaussian process regression (GPR) 

The Gaussian process (GP) is a set of random variables in which a 
limited number of them are integrated with Gaussian distributions [92]. 
The GP is fully characterized by its covariance and mean functions. This 
process is a natural generalization of Gaussian distribution. In this 
process, mean and covariance are, respectively, a vector and a matrix. 
Gaussian process regression (GPR) models are based on the assumption 
that previous observations must carry information about each other. 
Unlike the Gaussian distribution, the Gaussian process is over functions. 
As a result, Gaussian process models do not require any validation 
process to generalize them. Due to prior knowledge of functional de
pendency and data, Gaussian process regression models are able to un
derstand the predictive distribution corresponding to the test input [93]. 

Consider the S dataset with n observations. Where = {(xi, yi)
⃒
⃒i = 1,… 

, n} xi is the input vector with D dimension and yi is the target vector. 
This set consists of two components, input and output, as sample points. 
In order to facilitate, the inputs of the set are collected in the X = [x1, x2,

…, xn] matrix, and the outputs are also aggregated in the Y = [y1, y2,… 
, yn] matrix. 

The task of regression is to create a new input x* to achieve the 
predicted distribution for the corresponding values of the observational 
data y* based on the S dataset. The Gaussian process f(x) is defined by its 
mean m(x) function: 

m(x) = E(f (x)) (5) 

And the following equation describes covariance k(x, x′

) functions: 

k(x, x
′

) = E(f (x) − m(x))(f (x
′

) − m(x
′

)) (6) 

The Gaussian process is expressed as follows: 

f (x) ∼ GP(m(x), k(x, x′

)) (7) 

For simplicity, the mean function value is usually set to zero. In the 

Gaussian process, the relationship between the target and the input 
vector is as follows: 

yi = f (xi) + ε (8)  

where ε is the value of Gaussian distribution noise with σ2 variance and 
zero mean: 

ε ∼ N
(
0, σ2) (9) 

In addition, it is assumed that f = [f(x1),…, f(xn)]
T has a behavior 

based on the Gaussian process, p(f |X) = N(0,K) where K is the covari
ance matrix with ki,j = k(xi, xj) elements. 

K(x, x) =

⎡

⎢
⎢
⎣

K(x1, x1) K(x1, x2) … K(x1, xn)

K(x2, x1) K(x2, x2) … K(x2, xn)

⋮ ⋮ ⋱ ⋮
K(xn, x1) K(xn, x2) … K(xn, xn)

⎤

⎥
⎥
⎦ (10) 

By using GPR, one can compute f * at test points X*. 
The distribution of y conditioned on the values of f is given as the 

following equations: 

P(y|f ,X) = N
(
f , σ2

nI
)

(11)  

where I represents the unit n × n matrix. The marginal distribution of y 
can be calculated by using the property of Gaussian distribution: 

P(y|X) =
∫

p(y|f ,X)p(f |X)df = N
(
0,K + σ2

nI
)

(12) 

The joint distribution of the function values and the observed target 
values are as follows: 
[

y
f*

]

∼ N
([

K(X,X) + σ2I K(X,X*)

K(X*,X) K(X*,X*)

])

(13)  

where K(X*,X*) represents the self-covariance matrix of test points (X*)

and K(X,X*) represents the n × 1 covariance matrix of test points X* and 
all the input points X. 

Fig. 2. The general framework of the SHC of nanofluids prediction using developed data-driven models.  
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When the training process ends, using Bayesian theory, the nearest 
output values corresponding to X* can be estimated based on the 
training set. The probability distribution is updated using the observed 
data and Bayesian theory. From (3), using the standard rules for con
ditioning Gaussians, the predictive distribution is obtained as follows: 

P(f*|X, y,X*) ∼ N
(

f*, cov(f*)
)

(14) 

The output estimates are made by the measure of uncertainty 
(variance) and expected prediction (mean) of f* (predictive distribution 
of the function values). 

f* = K(X*,X)
[
K(X,X) + σ2I

]− 1y (15)  

cov(f*) = K(X*,X*) − K(X*,X)
[
K(X,X) + σ2I

]− 1K(X,X*) (16) 

The main component of a Gaussian process regression is the 
covariance or kernel function. The covariance function describes the 
similarity among the observed data [94]. The following covariance 
function was used in this research: 

Rational Quadratic Kernel 

k
(
xi, xj|θ

)
= σ2

f

(

1 +
r2

2ασ2
l

)− α

(17) 

Matern 3/2 

k
(
xi, xj|θ

)
= σ2

f

(

1+
̅̅̅̅
3

√
r

σl

)

exp
[

−

̅̅̅̅
3

√
r

σl

]

(18) 

Matern 5/2 

Fig. 3. A. schematic block diagram of the AI-based models for SHC of nanofluids prediction.  

M. Jamei et al.                                                                                                                                                                                                                                  



Journal of Energy Storage 33 (2021) 102067

6

k
(
xi, xj|θ

)
= σ2

f

(

1+
̅̅̅̅
5

√
r

σl
+

5r2

3σ2
l

)

exp
[

−

̅̅̅̅
5

√
r

σl

]

(19) 

Squared Exponential Kernel 

k
(
xi, xj|θ

)
= σ2

f exp
[

−
1
2

(
xi − xj

)T( xi − xj
)

σ2
l

]

(20) 

Exponential Kernel 

k
(
xi, xj|θ

)
= σ2

f exp
[

−
r
σl

]

(21)  

where σf is the signal standard deviation, σl is the characteristic length 

scale, and r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi − xj)
T
(xi − xj)

√

is the Euclidean distance between xi 

and xj. Using gradient-based algorithms, the hyperparameters of the 
covariance function θ (σl , σf) can be estimated. 

2.2. General regression neural network (GRNN) 

GRNN is a variant of the RBF neural network. In classification, these 
networks fall into the category of probabilistic neural networks. Prob
abilistic networks are able to converge rapidly towards the function with 
a limited number of training samples, which is an advantage over feed- 
forward neural networks. Specht [95] proposed a method for formu
lating a weighted neighborhood approach in the form of neural net
works. The GRNN neural networks are often used for function 
approximation, which includes a radial basis layer and a special linear 
layer. Each GRNN network has four layers [96] (Fig. 3). 

Input layer: In this layer, there is a neuron for each predictor variable. 
The input neurons are normalized and then feed the values to each of the 
neurons in the pattern layer. 

Pattern layer: This layer has a neuron for each instance in the training 
data set. Neuron stores predictive values for the target value sample. The 
pattern Pi is obtained using the Gaussian function as follows: 

Pi = exp
(
(X − Xi)

T
(X − Xi)

2σ2

)

(22)  

where σ is the spread parameter (smoothing parameter), Xi is the input 
vector of n variables. 

Summation layer: This layer has two neurons. At this layer, simple 
summation and the weighted sum of the pattern outputs is determined 
by: 

Ss =
∑n

i=1
Pi (23)  

Sw =
∑n

i=1
PiWi (24)  

where Wi is the activation weight for the pattern layer ith neuron. 
Output Layer: In the output layer, the predicted value is calculated 

using the following equation: 

ŷ = Sw/Ss (25)  

2.3. Random forest model 

The Random forest model is an efficient learning algorithm using an 
ensemble of decision trees that can be used for regression or classifica
tion [97]. Generally, a combination of decision trees is generated using 
the random bootstrap samples of the inputs [97]. The main advantages 
of this approach over the individual regression trees are its reduced 
probability of overfitting and higher accuracy [97,98]. The RF model 
needs the number of trees grown (ntree) and feature predictor variables 
mtry. These two parameters are used to control the algorithm behavior 

[99]. In order to create an RF model, the following steps should be taken 
(see Fig. 3): 

Step 1. Set a value for ntree in the forest 

Step 2. Pick a bootstrap sample with size ntree from the input or 
training dataset to each tree 

Step 3. Sample mtry from a training dataset with p randomly-selected 
predictors for the split point in each node. 

Step 4. Separate the split-point and the best variable among pre
dictors, and divide each node into two sub-nodes. 

Step 5. Calculate the new data by taking the average of the predicted 
values of each individual tree in the forest. 

To generate a forest, the RF creates many random binary trees, and 
then a bootstrap sample is used to grow trees using the classification and 
regression trees (CART) method using the random variables chosen at 
each node [90,100]. Subsequently, the training dataset that is not used 
in a bootstrap sample is used to calculate the ‘out of bag’ (OOB) method. 
OOB is an error rate to determine the prediction error that also evaluates 
the RF method accuracy and also adjusts the method parameters, e.g., 
mtry [101]. As expected, in order to minimize the OOB error, the values 
of mtree and mtry should be optimized [90,102]. This model is capable of 
handling high-dimensional databases where many predictors are 
involved and bothntree, mtry should be adjusted appropriately to avoid 
overfitting of the RF predictions. One of the challenges of the RF 
methods is how to determine the optimal number of trees, which is 
optimal when the OOB error rate is stabilized [103]. An internal opti
mization function using the decrease in accuracy and mean decrease in 
node impurity is used to determine the optimal number of predictors 
mtry [100]. In order to implement the RF model, a Matlab’s MEX function 
of Andy Liaw et al.’s C code (used in R package random Forest) is used 
where the default values of ntree = 500 and mtry = Floor(

̅̅̅̅̅
M

√
) are sug

gested, respectively [104]. M is the number of independent predictors or 
features. To evaluate the predicted relative viscosity of the RF model and 
assess the variable importance, the mean square error (MSE) of the OOB 
error rate is determined for each decision tree as follows [97,104]: 

MSEOOB =

∑ntree
i=1

(
Cp,i − COOB

pi

)2

ntree
(26)  

where COOB
pi represents the mean predicted SHC and Cp,i represents the 

experimental data points. A schematic block diagram of the imple
mented data-driven approaches for the estimation of the SHC of nano
fluids is illustrated in Fig. 3. 

3. Performance assessment 

To quantify the validation of AI models under consideration, six 
performance indicators comprised the Correlation Coefficient (R), Root 
Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), 
Relative Absolute Error (RAE), Scatter Index (SI), and Willmott’s Index 
of agreement (IW) [105] were used. For a reliable judgment about the 
accuracy of forecasting in models, if the MAPE value is less than 10%, 
then the model has the best performance; for 11 ≤ MAPE ≤20, the model 
has good predictive performance; and for 21≤ MAPE ≤50, the model 
predicting is reasonable [106]. 

R =

∑N
i=1

(

Cnf
P c, i − Cnf

P c

)

.

(

Cnf
P o, i − Cnf

P o

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

Cnf
P c, i − Cnf

P c

)2∑N
i

(

Cnf
P o, i − Cnf

P o

)2
√ (27) 
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RMSE =

(
1
N

∑N

i=1

(
Cnf

P o, i − Cnf
P c, i

)2
)0.5

(28)  

MAPE =

(
100
N

)
∑N

i=1

⃒
⃒
⃒
⃒
⃒

Cnf
P o, i − Cnf

P c, i
Cnf

P o, i

⃒
⃒
⃒
⃒
⃒

(29)  

RAE =

∑N
i=1

⃒
⃒
⃒Cnf

P c, i − Cnf
P o, i

⃒
⃒
⃒

∑N
i=1

⃒
⃒
⃒
⃒C

nf
P o, i − Cnf

P o

⃒
⃒
⃒
⃒

(30)  

SI = RMSE
/

Cnf
P o (31)  

Iw = 1 −

∑N
i

(
Cnf

P o, i − Cnf
P c, i

)2

∑N
i=1

(⃒
⃒
⃒
⃒

(

Cnf
P o, i − Cnf

P o

)⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒

(

Cnf
P o, i − Cnf

P o

)⃒
⃒
⃒
⃒

)2, 0 < Iw ≤ 1

(32)  

where N is the number of data points, Cnf
P c,i and Cnf

P o,iare the ith predicted 
and measured specific heat capacity of nanofluids, respectively. On the 

other hand, Cnf
P candCnf

P oare described as the mean value of predicted and 
measured specific heat capacity of nanofluids, respectively. Further
more, in order to compare the similarity patterns in polar space between 
predicted and measured values of Cnf

P , the Taylor diagram presents the 
simultaneous consideration of three statistical measures: R, standard 

deviation SDev2
i = 1

N
∑N

i=1 (Cnf
P i − Cnf

P i)
2
, and centered Root Mean 

Square Error (cRMSE2 = SDevo
2 + SDevp

2 − 2RSDevo.SDevp) [107]. The 
R is represented by the azimuthal position; the standard deviation is 
computed by using the radial distance from the origin and ultimately 
cRMSE is introduced by the concentric circular arcs [107]. 

4. Data collecting and pre-processing 

The selection of influential variables (or independent parameters) is 
an essential part of developing an AI-based model, which should be 
performed meticulously [108,109]. According to the previous experi
mental studies on the assessment of SHC of nanofluids in Table 2, 
various influential parameters have been used as input of the AI-based 
model. 

Among all the input parameters, four independent variables as the 

solid volume fraction (ϕ), temperature (T), mean diameter of nano
particle (Dp), and the SHC of base fluid (CBase

P ) were considered to 
develop the predictive models for precise estimating the SHC of nano
fluids. The functional relation between predictive independent variables 
and target (Cnf

P ) is expressed as: 

Cnf
P = f

(
ϕ,T,CBase

P ,Dp
)

(33)  

ϕ =

(
m
ρ

)

np(
m
ρ

)

np
+
(

m
ρ

)

bf

(34)  

where ρand m are the density and mass of the nanoparticle, respectively. 
The predictive AI-based models are developed using a total of 1051 

reliable experimental data points that are collected from 10 references 
[43,55,57,61,110–114]. The comprehensive characteristics of imple
mented data points are tabulated in Table 3. In this study, the data set 

Table 2 
Highlight of published works on the use of machine learning methods in pre
dicting the SHC of nanofluids.  

Nanofluids Model inputs ML methods Reference 

AlN/EG, Si3N4/ 
EG, TiN/EG 

Nanoparticles size, 
Nanoparticles molar mass, 
Nanoparticles mass 
fraction, temperature 

Bayesian 
optimized- 
SVR 

Alade et al. 
[76] 

Al2O3/molten salt, 
SiO2/molten 
salt, TiO2/ 
molten salt 

Nanoparticles weight 
fraction, temperature 

ANN Hassan 
et al. [52] 

Al2O3/Water Nanoparticles volume 
fraction, SHC of 
nanoparticles 

Hybrid genetic 
algorithm-SVR 

Alade et al. 
[77] 

CuO/water Nanoparticles volume 
fraction, fluid temperature 

SVR and ANN Alade et al. 
[84] 

CuO/EG, Al2O3/ 
EG 

SHC of the base fluid, SHC 
of nanoparticles, the 
temperature of the base 
fluid, Nanoparticles volume 
fraction 

Bayesian 
optimized- 
SVR 

Alade et al. 
[50]  

Fig. 4. The correlation matrix between the input and output variables.  

Table 3 
Details of the employed experimental data points for designing the predictive 
SHC models.  

References Number of 
data 

Nanoparticle Base fluid 

[43,57,110] 425 Al2O3  

Water, EG, (50:50)% 
EG/Water    

[49] 189 CuO Water, EG 
[114] 55 CD-CNTs EG 
[111, 113] 45 MWCNT 

(CNT) 
(30:70)% EG/DI.Water, 
Transformer Oil 

[55] 135 SiO2 (60:40)% EG/Water 
[61] 25 SWCNT Water 
[43,112] 60 TiO2 Water, BaCl2–H2O 
[55] 115 ZnO (60:40)% EG/Water  

Table 4 
The descriptive statistics of predictive variables and targets.   

φ(%)  T(K) CBase
P (J/K.g)  DP(nm) Cnf

P (J/K.g)  

Minimum 0.005 273.200 2.037 1.500 1.201 
Maximum 10.000 392.600 4.196 77.000 4.288 
Range 9.995 119.500 2.159 75.500 3.087 
Mean 3.554 326.000 3.373 36.510 3.109 
Std. deviation 3.152 19.580 0.601 18.570 0.634 
Skewness 0.683 0.223 -0.246 0.661 -0.081 
Kurtosis -0.820 0.118 -0.936 0.185 -0.915  
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was randomly divided into two sections: 75% (788 data points) and 25% 
(263 data points) of data points, which were used to perform training 
and testing stages, respectively. The descriptive statistics of datasets are 
reported in Table 4. A survey on statistical features of data sets 
demonstrated that volume fraction and mean diameter of nanoparticle 
have a large skewness coefficient, indicating a significant difference 
between the mean and median values of these predictive variables. 
Based on existing literature, the distribution of data is indicated as a 
normal distribution for the skewness and kurtosis in ranges of [− 1, 1] 
and [− 2, 2], respectively [115–117]. Thus, it can be concluded from 
Table 4 that the values of data sets are close to normal. The correlation 
matrix between the predictive variable and target (SHC) was shown in 
Fig. 4, which explains the linear correlation between all the variables. 
The Pearson correlation (Pc) between model inputs and target variables 
clearly demonstrated that the SHC of base fluid (Pc =0.8) has the highest 
linearity with the SHC of nanofluids among all the inputs and the 
remaining ones have similar Pearson correlation. To enhance the 
convergence acceleration of provided AI models, the predictive vari
ables and targets are normalized into a range of [0, 1]. All the 
input-output datasets are normalized by the following formula: 

xnor =
x − xmin

xmax − xmin
(35)  

where x, xnor,xmax, and xminare the original value, normalized value, 
maximum, and minimum of the original value, respectively. 

5. Results and discussion 

As mentioned in the literature, the SHC of nanofluids is one of the 
most significant thermophysical properties, which has a crucial role in 
solar energy applications [5]. In this research, a probabilistic 
non-parametric approach namely GPR, RF, and GRNN model, which are 
the robust machine learning approaches, were used to provide an ac
curate prediction of the SHC of nanofluids based on four predictors 
variables including solid volume fraction (ϕ), temperature (T), mean 
diameter of nanoparticle (Dp), and SHC of base fluid (CBase

P ). 
One of the most important advantages of the GPR model over other 

machine learning methods is its ability to capture the uncertainty of the 
model directly. GPR directly gives a distribution for the prediction 
value, rather than just one value as the prediction. Also, the GPR model 
is flexible and easy to implement. GPR gives the ability to add prior 
knowledge and specification about the shape of the model by selecting 
different types of kernels [94]. In order to develop the GPR model, five 
covariance functions comprised of Matern32, Matern52, Squared 
exponential, Rational quadratic, and Ard exponential was employed. 
The results of using each of the covariance functions in the GPR model 
are shown in Table 5, which indicates the superiority of the Ard expo
nential function due to having the highest correlation (0.999998 and 
0.99974) and lowest RMSE (0.001153 J/K.g and 0.015064 J/K.g) in 
both training and testing stages, respectively. Besides, the Fig. 5 illus
trated the predicted SHC of nanofluids distribution obtained from the 
covariance functions in comparison to the measured data points in the 
violin plot pattern for both training and testing modes. The performance 
of the "Ard exponential" function was significantly superior to others in 
the prediction of the SHC of nanofluids. As mentioned earlier, the 
hyper-parameters of the covariance function θ (σl , σf) were optimized 
automatically using gradient-based algorithms. 

For the development of the RF model, the predictor variable number 
(mtry ) in a trial and error process is selected in the range of [1,5], which 

Fig. 5. The violin plot of the implemented covariance function in the GPR 
model for (A) training and (B) testing stages. 

Table 5 
The correlation and RMSE values for assessment of the optimum covariance function implemented in the GPR model.   

Covariance function  

Statistical criteria Matern32 Matern52 Squared exponential Rational quadratic Ard exponential 

Training R 0.992539 0.993094 0.993066 0.993066 0.999998  
RMSE 0.076695 0.07376 0.073879 0.073879 0.001153 

Testing R 0.981808 0.985407 0.987739 0.987739 0.99974  
RMSE 0.12543 0.1129 0.104049 0.104049 0.015064  

Fig. 6. The out-of-bag (OOB) MSE error versus the number of the tree for the 
RF model. 
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for a specific number of trees and based on the mean decrease in accu
racy of prediction, was optimized to 4. At the first attempt for devel
oping the RF model, the number of the trees was set equal to 1000, and 
the out-of-bag (OOB) error rate values were surveyed. The results 
demonstrated that the MSE value after 200 trees remained nearly un
changed, and the value of error equal to 0.27% (see Fig. 6), which im
plies that the convergence criterion is satisfied. Thus, mtry and ntreewere 
obtained 4 and 200, respectively. 

It is worth noting that, for the GRNN model development, the neu
rons number and spread parameter are the critical setting factors, which 
in a trial and error procedure were selected as 0.005 and 100, respec
tively. In this study, the performance of the under-studied AI methods 
was evaluated using strong statistical criteria with the statistical results 
of the AI techniques in the training and testing stages, as listed in 
Table 6. Comparison of the results reflected in Table 6 demonstrated that 
the GPR model has the highest correlation with measured data sets 
values and the least error in the training stage (R=0.999998, 

Fig. 7. The scatter plots of three predictive models for training (A) and testing (B) stages.  

Table 6 
The performance metrics of the provided AI-based models for the prediction of 
the SHC of nanofluids.   

Statistical criteria GRP RF GRNN 

Training stage R 0.999998 0.99934 0.99984  
RMSE 0.00115 0.02317 0.01115  
MAPE 0.0230 0.4038 0.1060  
RAE 0.001279 0.021453 0.0052  
SI 0.000369 0.007421 0.00357  
Iw 0.99999 0.99966 0.99992  
AVE Rank 1 3 2 

Testing stage R 0.99974 0.99761 0.99563  
RMSE 0.01506 0.04598 0.06085  
MAPE 0.3092 1.0646 1.1237  
RAE 0.01476 0.0501 0.05266  
SI 0.00491 0.01497 0.01981  
Iw 0.99986 0.99871 0.99774  
AVE Rank 1 2 3  
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RMSE=0.00115 J/K.g, MAPE=0.0230%, and Iw=0.99999) and testing 
stage (R=0.99974, RMSE=0.01506 J/K.g, MAPE=0.3092%, and 
Iw=0.99986), thereby making it the most superior model for estimating 
the SHC of nanofluid over RF and GRNN models. Moreover, the results 
showed the RF (R=0.99761, RMSE=0.04598 J/K.g) and GRNN 
(R=0.99563, RMSE=0.06085 J/K.g) models, as the second and third 
best ranks in the testing phase with good accuracy for assessing SHC of 
nanofluids. 

Fig. 7 illustrates the scatter plots of three predictive models for the 
training (A) and testing (B) stages, which graphically and quantitatively 
describe the consistency of predicted and corresponding measured SHC 
values of nanofluids. It is crystal clear that the SHC of nanofluids (Cnf

p ) 
values given by the GPR approach has the best fit with experimental data 
points than those obtained with RF and GRNN models. It must be noted 
that the best performance for the RF and GRNN is in the range of Cnf

p ≥ 2 
and 2 ≤ Cnf

p ≤ 3.25, respectively. To better appreciate the performance 
of the predictive methods, Fig. 8 presents the predicted values and ob
servations separately. It shows that the results of the GPR method are 
absolutely superior to the other ML-based models. 

Taylor diagrams in the training and testing of three data-driven 
models are depicted in Fig. 9 for simultaneous evaluation of R, 

cRMSE, and standard deviation. A cursory glance at the location of the 
representation of each data-driven model relative to the target point 
indicates that there is a similar performance in the evaluation of Cnf

p 

values. However, by further magnifying the representation points, it can 
be seen that the ensemble method outperforms two other models in both 
training and testing phases due to the least physical distance from the 
target (red) point. 

Error analysis was comprehensively conducted to efficiently assess 
the accuracy of developed models using Relative Deviation (RD) versus 
cumulative absolute error estimation. Fig. 10 depicted the relevant 
distribution of the relative deviation (Dr =

μr o − μr i
μr o

× 100) for the three 
predictive models in the form of the violin (A) and diffusion plot (B) in 
both training and testing phases. According to Fig. 10, the error distri
bution of the GPR model has much more compression in the training 
phase than the RF and GRNN in both training and testing stages. Despite 
having a higher deviation range, the GRNN model was distributed in less 
compression in the testing phase than the RF. Furthermore, examining 
the relative deviation range of each method showed that the GPR model 
has the least range of deviation ( − 8.4% ≤ Er ≤ 1.83%), and it, there
fore, outperformed the RF ( − 20.50% ≤ Er ≤ 7.50%) and GRNN ( −
19.3% ≤ Er ≤ 14.6%) models. 

Another error analysis was conducted on the expert validation of the 

Fig. 8. The comparison between measured and predicted SHC of nanofluids 
values by three developed models in testing mode. 

Fig. 9. Validation of the predictive performance of models in the training and 
testing stage using the Taylor diagrams. 
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Fig. 10. The error distribution of the AI models in the form of the violin plot (A) and data point plot (B).  

Fig. 11. The cumulative frequency versus the absolute relative error for all the models in the total frequency range (Left) and the range of (90 to 100%) (Right).  
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AI-based model as a better computational model for estimating the SHC 
of nanofluids shows the percentage of cumulative versus the absolute 
percentage of relative error. Fig. 11 (Left) proves that more than 90 % of 
the predicted Cnf

p obtained from the GPR model has an absolute relative 
error of less than 0.17 % whereas the RF and GRNN have an absolute 
relative error of 1.23 % and 0.77 %, respectively. To examine more 
accurately the performance of the RF and GRNN models, the range of 
cumulative frequency in the range of 90 to 100 was magnified in Fig. 11 
(Right) and observed that more than 95 % of the data have an error of 
less than 2 %. It can be concluded that the GRNN, developed by all the 
datasets, performs more efficiently than the RF technique. Regarding the 
results of error analysis, it can be deduced that the GRNN performs 
relatively better for the assessment of the SHC of nanofluids than the RF 
model despite having less correlation in the testing phase (R=0.99563) 
and higher error metrics (RMSE= 0.06085 J/K.g and MAPE=1.1237%). 

Eventually, a physical trend of the SHC for four nanofluids was 
examined to better find the capabilities of the main AI model, and the 
results of consistency between experimental observations and AI models 
were compared with the aforementioned existing empirical correlations. 
Fig. 12 depicted the variation of the SHC a nanofluid including Al2O3 in 
a mixture of 50:50% ethylene glycol (EG) and water (W) [57] versus the 
volume fraction (%) obtained from three AI-based models, experimental 

data points, and Xuan and Roetzel’s Model [118]. As seen in Fig. 12, the 
results indicated that SHC values predicted by the proposed GPR model 
results were in good agreement with the measured data points. 

According to Fig. 13, the physical trend of the SHC of three nano
fluids consists of MWCNT by φ= 0.15, 0.3, and 0.45 % in a mixture of 
30:70 % ethylene glycol (EG) and water (W) [111] versus temperature 
(K) were conceptually depicted by using the GPR model and Eq. (4). 
From Fig. 13, it can be said that the ensemble model was successful in 
capturing the pattern of corresponding measured data points. In the next 
validation case, the variation of SWCNT in water versus the volume 
fraction [61] was illustrated for the purpose of the performance mea
surement of the AI models and Eq. (4), as shown in Fig. 14. The GPR 
model can optimally obtain the expected physical trend of the 

Fig. 12. Comparing the predicted SHC using AI-based models, Xuan and 
Roetzel’s Model and experimental datasets for the nanofluids consist of Al2O3 
by T = 303.25Kin a mixture of 50:50% ethylene glycol (EG) and water 
(W) [57]. 

Fig. 13. Comparing the predicted SHC using the GPR model, equilibrium based 
Eq and experimental datasets for thee nanofluids consist of MWCNT by ϕ =
0.15, 0.3, 0.45%in a mixture of 30:70% ethylene glycol (EG) and water 
(W) [111]. 

Fig. 14. Comparing the predicted SHC using three AI models, equilibrium 
based Eq and experimental datasets for nanofluids consist of SWCNT in 
water [61]. 

Fig. 15. Comparing the predicted SHC GPR model, Xuan and Roetzel’s Model, 
and experimental datasets for thee nanofluids consist of MWCNT by ϕ = 0.1,
0.2,0.4%in transfer oil [113]. 

Table 7 
The sensitivity analysis of the model via the GPR model.   

All-φ  All-T All-CBase
P  All-Dp All 

R 0.96506 0.99913 0.88964 0.86752 0.99974 
RMSE 0.16958 0.02708 0.29579 0.32198 0.01506 
MAPE 4.77745 0.43474 5.14572 6.67815 0.30924 
RAE 0.25811 0.02286 0.27069 0.38663 0.01476 
SI 0.05522 0.00882 0.09631 0.10484 0.00490 
IW 0.98169 0.99956 0.93910 0.92333 0.99986 
St.Dev 0.61828 0.64481 0.57021 0.54739 0.64481  
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corresponding measured datasets, followed by the GRNN and RF. In the 
last trend analysis case, Fig. 15 addresses the reliability and efficiency of 
the GPR in estimating the SHC of three types of nanofluids including 
MWCNT by φ=0.1, 0.2, and 0.4 % in transfer oil [113] in comparison 
with the Xuan and Roetzel’s Model [118]. Obviously, the 
thermo-physical aspects of the validation cases express that the SHC of 
nanofluids values enhanced by increasing the temperature, whereas this 
trend will be reversed if the volume fraction is decreased. 

6. Limitations and future research 

The current work is focused on metal oxide and carbon material- 
based nanofluids in water, EG, and a mixture of them, which have 
many applications in the solar energy system. Recently, the new types of 
nanofluids comprised of metal oxide dispersed in the molten salt and 
their eutectics, such as alkali nitrate, alkali carbonate, or alkali- 
chlorides, widely considered in energy system applications. Those 
types of nanofluids are capable surprisingly to enhance the thermo- 
physical properties (i.e., specific heat capacity and thermal diffusivity) 
of base fluids. They have highly nonlinear behavior and can be consid
ered as an evaluation of AI-based investigation in several aspects of 
energy storage systems. The ensemble stacking method can be a suitable 
AI-based selection for modeling the nonlinear behavior of thermal 
properties of the mentioned nanofluids, which can combine the advan
tages of several standalone AI approaches in a single model. 

7. Sensitivity analysis 

Sensitivity analysis in a predictive model demonstrates the degree of 
importance of predictive variables on the target. The dependence of the 
ϕ, T, Dp, and CBase

P on the estimated SHC of nanofluid (Cnf
P ) is examined, 

and it shows that the SHC of base fluid is considered to be the most 
crucial parameter due to its higher Pearson coefficient (rp=0.8) as 
compared to the others. However, nonlinear relationships between input 
parameters and the target require that the importance of each one be 
assessed by subsequently excluding them using equalization to zero and 
preserving the rest of input variables in the predictive model [75,90, 
119]. For this purpose, the GPR model, as the best predictive AI model, 
was examined to survey the response of SHC based upon the degree of 
influence of each inputs using the statistical criteria (i.e., R, RMSE, 
MAPE, RAE, SI, Iw, and St.Dev). 

According to Table 7, it can be concluded that the mean diameter of 
nanoparticle with the lowest correlation coefficient and agreement 
index (R=0.86752 and Iw=0.92333) and having the most error metrics 
(RMSE=0.32198 J/K.g, MAPE=6.67815% and RAE=0.38663) is known 
as the most sensitive parameter in estimating the SHC of nanofluids, 
followed by the SHC of the base fluid (R=0.88964 and RMSE=0.29579 
J/K.g) and solid volume fraction (R= 0.96506 and RMSE=0.16958 J/K. 

g) in the next ranks. The sensitivity scaled indices are used to better 
show the effect of the input parameters (i.e.,ϕ, T, Dp, CBase

p ) using R and 
Iw in testing mode. Regrading to Fig. 16, it can be concluded that the 
mean diameter of nanoparticles (13.23% and 7.65%) and the SHC of the 
base fluid (11.01% and 6.08 %) with the highest sensitivity indices for R 
and Iw are the most effective factors in estimating the SHC of nanofluids, 
respectively. 

8. Concluding remarks 

In this study, we examined the application of ML algorithms in the 
prediction of the SHC of nanofluids using the GPR technique in com
parison to the RF approach and GRNN. The models developed in this 
study used solid fraction volume (ϕ), temperature (T), mean diameter of 
nanoparticle (Dp), and the SHC of base fluid (CBase

P ) as model inputs. The 
models successfully predicted the SHC of nanofluids with a high degree 
of accuracy, showing that it is a viable alternative in the estimation of 
the specific heat capacity of the nanofluids than the seemingly time- 
consuming, expensive, and cumbersome experimental procedures. The 
GPR model with the best predictive performance (R=0.99974, 
RMSE=0.01506 J/K.g) outperformed the RF (R=0.99761, 
RMSE=0.04598 J/K.g), GRNN (R=0.99563, RMSE=0.06085 J/K.g), 
and existing convectional correlations in SHC assessment of nanofluids 
for solar energy applications. A proficient error analysis demonstrated 
that maximum absolute relative error of more than 90 % of the predicted 
data points for the GPR, RF, and GRNN models were 0.17 %, 1.23 %, and 
0.77 %, respectively, which indicates the successful performance of all 
three AI methods in the meticulous estimation of SHC of nanofluids. 
Besides, the mean diameter of nanoparticles and the SHC of the base 
fluid by the highest sensitivity indices for R (13.23 % and 11.01 %) and 
Iw (7.65 % and 6.08 %) are the most influence in prediction of the SHC of 
nanofluids, respectively. 
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Fig. 16. Classification of predictive variables using sensitivity index for the prediction of nanofluids SHC on (Left) R and (Right) IA.  
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