Please use this identifier to cite or link to this item: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/1038
Title: Metabolite profiling for biomarkers in Schistosoma haematobium infection and associated bladder pathologies
Authors: Adebayo, Adewale S.
Mundhe, Swapnil D.
Awobode, Henrietta O.
Onile, O.S.
Agunloye, Atinuke M.
Isokpehi, Raphael D.
Shouche, Yogesh S.
Santhakumari, Bayatigeri
Anumudu, Chiaka I.
Issue Date: Apr-2018
Publisher: PLoS Neglected Tropical Diseases
Citation: Adebayo AS, Mundhe SD, Awobode HO, Onile OS, Agunloye AM, Isokpehi RD, et al. (2018) Metabolite profiling for biomarkers in Schistosoma haematobium infection and associated bladder pathologies. PLoS Negl Trop Dis 12(4): e0006452. https://doi.org/10.1371/journal.pntd.0006452https://doi.org/10.1371/journal.pntd.0006452
Abstract: Background Metabolic fingerprinting analysis can offer insights into underlying reactions in a biological system; hence it is crucial to the understanding of disease pathogenesis and could provide useful tools for discovering biomarkers. We sought to examine the urine and plasma metabolome in individuals affected by urogenital schistosomiasis and its associated-bladder pathologies. Methodology Blood and midstream urine were obtained from volunteers who matched our inclusion criteria among residents from Eggua, southwestern Nigeria. Samples were screened by urinalysis, microscopy, PCR and ultrasonography, and categorised as advanced (urogenital schistosomiasis associated-bladder pathologies), infection-only (urogenital schistosomiasis alone) and controls (no infection and no pathology). Metabolites were extracted and data acquired with ultra high-performance liquid chromatography coupled with Thermo Q-Exactive orbitrap HRMS. Data was analysed with MetaboAnalyst, Workflow4Metabolomics, HMDB, LipidMaps and other bioinformatics tools, with univariate and multivariate statistics for metabolite selection. Principal findings There were low levels of host sex steroids, and high levels of several benzenoids, catechols and lipids (including ganglioside, phosphatidylcholine and phosphatidylethanolamine), in infection-only and advanced cases (FDR<0.05, VIP>2, delta>2.0). Metabolites involved in biochemical pathways related to chorismate production were abundant in controls, while those related to choline and sphingolipid metabolism were upregulated in advanced cases (FDR<0.05). Some of these human host and Schistosoma haematobium molecules, including catechol estrogens, were good markers to distinguish infection-only and advanced cases. Conclusions Altered glycerophospholipid and sphingolipid metabolism could be key factors promoting the development of bladder pathologies and tumours during urogenital schistosomiasis.
Description: Staff Publication
URI: https://doi.org/10.1371/journal.pntd.0006452h
http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/1038
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
pntd.0006452.pdf5.11 MBAdobe PDFThumbnail
View/Open


Items in EUSpace are protected by copyright, with all rights reserved, unless otherwise indicated.