Please use this identifier to cite or link to this item: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/994
Title: On the Thermal Conductivity Assessment of Oil-Based Hybrid Nanofluids using Extended Kalman Filter integrated with feed-forward neural network
Other Titles: On the Thermal Conductivity Assessment of Oil-Based Hybrid Nanofluids using Extended Kalman Filter integrated with feed-forward neural network
Authors: Jamei, Mehdi
Olumegbon, Ismail A.
Karbasi, Masoud
Ahmadianfar, Iman
Asadi, Amin
Mosharaf-Dehkordif, Mehdi
Keywords: Nanofluids
thermal conductivity
oil-based hybrid nanofluids
Kalman filter
response surface methodology
Issue Date: 2021
Publisher: International Journal of Heat and Mass Transfer
Abstract: Regarding their ability to enhance conventional thermal oils' thermophysical properties, oil-based hybrid nanofluids have recently been widely investigated by researchers, especially on lubrication and cooling application in the automotive industry. Thermal conductivity is one of the most crucial thermophysical properties of oil-based hybrid nanofluids, which has been studied in a minimal case of studies on the specific types of them. In this research, for the first time, a comprehensive data-intelligence analysis performed on 400 gathered data points of various types of oil-based hybrid nanofluids using a novel hybrid machine learning approach; the Extended Kalman Filter-Neural network (EKF-ANN). The genetic programming (GP) and response surface methodology (RSM) approaches were examined to appraise the main paradigm. In this research, the best subset regression analysis, as a novel feature selection scheme, was provided for finding the best input parameter among all existing predictive variables (the volume fraction, temperature, thermal conductivity of the base fluid, mean diameter, and bulk density of nanoparticles). The provided models were examined using several statistical metrics, graphical tools and trends, and sensitivity analysis. The results assessment indicated that the EKF-ANN in terms of (R=0.9738, RMSE=0.0071 W/m.K, and KGE=0.9630) validation phase outperformed the RSM (R=0.9671, RMSE=0.0079 W/m.K, and KGE=0.9593) and GP (R=0.9465, RMSE=0.010 W/m.K, and KGE=0.9273), for accurate estimation of the thermal conductivity of oil-based hybrid nanofluids.
Description: Staff Publication
URI: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/994
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
pagination_HMT_121159.pdf2.4 MBAdobe PDFThumbnail
View/Open


Items in EUSpace are protected by copyright, with all rights reserved, unless otherwise indicated.