Please use this identifier to cite or link to this item: http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/1218
Title: Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil
Authors: Salam, Lateef B.
Keywords: Heavy metals
Antibiotics
Shotgun metagenomics
Heavy metal resistome
Antibiotic resistome
Issue Date: 7-May-2020
Publisher: Biotech
Citation: Salam, L. B. (2020). Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech, 10(6). doi:10.1007/s13205-020-02219-z
Abstract: The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Description: Staff Publication
URI: doi:10.1007/s13205-020-02219-z
http://repository.elizadeuniversity.edu.ng/jspui/handle/20.500.12398/1218
Appears in Collections:Research Articles

Files in This Item:
File Description SizeFormat 
13205_2020_Article_2219.pdf1.39 MBAdobe PDFThumbnail
View/Open


Items in EUSpace are protected by copyright, with all rights reserved, unless otherwise indicated.