Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "AbdulKabir, A. A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    New Method of LMS Variable Step-Size Formulation for Adaptive Noise Cancellation
    (2013) AbdulKabir, A. A.; Aibinu, A. M.; Onwuka, E. N.; Salami, Momoh-Jimoh E.
    Least mean square (LMS) is a widely used steepest descent algorithm known with efficient tracking ability of small mean square error (MSE) but with low convergence speed. In contract to the fixed step size, variable step size was introduced to improve the convergence speed while maintaining the minimal MSE. In this work, a new method was formulated to determine the variable step size of the LMS algorithm. Simulation results are presented to support the experimental analysis for the performance evaluation and comparison. Result reveals that the performance the of new formulated variable step size algorithm is better compare to the conventional LMS algorithm.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback