Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abidakun, Olatunde A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Artificial neural network prediction of exhaust emissions and flame temperature in LPG (liquefied petroleum gas) fueled low swirl burner
    (Energy by Elsevier, 2013-09) Adewole, Bamiji Z.; Abidakun, Olatunde A.; Asere, Abraham A.
    This study deals with ANN (artificial neural network) modeling of a swirl burner. The model was used to predict the flame temperature and pollutant emissions (CO (carbon monoxide) and NOx (nitrogen oxide)) from combustion of LPG (liquefied petroleum gas) in the swirl burner. The data for the training and testing of the proposed ANN was obtained by combusting LPG at various equivalent ratios (LPG/air ratios) and swirler’s vane angles in a low swirl burner. Vane angles of 35e60 in steps of 5 and equivalent ratios of 0.94, 0.90, 0.85, 0.80, 0.75, 0.71, 0.66 and 0.61 were considered. An ANN model based on standard back-propagation algorithms for the swirl burner was developed using some of the experimental data for training and validation. The performance of the ANN was tested by comparing the predicted outputs with the experimental values that were not used in training the network. R values of 0.94 were obtained for CO and NOx and 0.99 for flame temperature. These results show that very strong correlation exists between the ANN predicted values and the experimental results. Therefore, this study demonstrates that the performance and emissions of swirl burner can be accurately predicted using ANN approach.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback