Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Amsa, Ameer"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A novel hybrid artificial intelligence technique for colpitts oscillator design
    (Springer US, 2014-02-01) Ghazali, Mohamad; Amsa, Ameer; Aibinu, A. M.; Salami, Momoh-Jimoh E.
    In the design of the common base Colpitts oscillator, the resistance values of Thevenin’s resistors significantly influenced the transient time and steady state response of the resulting circuit. Various traditional approaches such as intuitive reasoning, mathematical calculation, and simulation-based techniques have been proposed in the literature for this purpose. Some of the aforementioned techniques involve rigorous mathematics, intuition, and experimentation in determining appropriate component values for optimal performance, stable steady state performance, and short transient response time from the resulting oscillator. In this paper, a new method of designing Colpitts oscillator using hybrid artificial intelligence comprising evolutionary-based Genetic Algorithm (GA) and artificial neural network (ANN) has been proposed. GA has been used in selecting various optimum resistance values of Thevenin’s resistors for maximizing long-term stability of the output waveform thus ensuring stable steady response of the designed circuit. ANN has been utilized in learning the nonlinear relationship between Thevenin’s resistors and transient time response of the Colpitts oscillator. Upon ANN convergence, optimum resistance values of obtained from GA process are fed into the trained ANN in predicting transient response time of each circuit. Optimized values with the shortest transient response time are finally selected for the Colpitts oscillator. The designed circuit successfully achieved optimization between its transient time response and steady state response. Hence, successfully reducing computation associated with existing traditional techniques in designing similar optimum Colpitts oscillator and achieving stable steady state output. Furthermore, this work has also demonstrated that ANN is capable of predicting the transient time of circuit with reasonable accuracy.
  • Loading...
    Thumbnail Image
    Item
    A Review of Forecasting Techniques
    (The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2012) Ghazali, Mohamad; Amsa, Ameer; Aibinu, A. M.; Salami, Momoh-Jimoh E.; Balogun, Wasiu
    This work examines recent publications in forecasting in various fields, these include: wind power forecasting; electricity load forecasting; crude oil price forecasting; gold price forecasting energy price forecasting etc. In this review, categorization of the processes involve in forecasting are divided into four major steps namely: input features selection; data pre-processing; forecast model development and performance evaluation. The various methods involve are discussed in order to provide the overall view about possible options for development of forecasting system. It is intended that the classification of the steps into small categories with definitions of terms and discussion of evolving techniques will provide guidance for future forecasting sytem designers.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback