Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Anyanwu, B.U."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Experimental studies and influence of process factor on zinc-nickel based coating on mild steel
    (Taylor & Francis: Advances in Materials and Processing Technologies, 2021-03) Fayomi, O.S.I.; Sode, A.A.; Anyanwu, B.U.; Ayoola, A.A.; Nkiko, Mojisola O.; Oluwasegun, K.M.; Alkhuele, D.O.; Ighravwe, D.E .
    Sulphate-rich electrolytic bath containing ZnSO4.7H2O in NiP solution was used to develop coating with Ni-P-Zn matrix under optimised process parameter. The major considerations are to examine the factor variance and the effect of varying time parameter between 10, 15, 20 and 25 min on the developed coating. Wear loss evolution was examined using reciprocating sliding wear tester with a force of 10 N and 20 N. The microhardness behaviour was examined using durascan microhardness tester with diamond indenter. The change in the structural build-up and the corrosion performance trend was observed using a scanning electron microscope enhanced with energy dispersive spectroscopy and potentiodynamic polarisation route. From the result we observe that time-dependant factors impact maximally on the crystal growth which rightly influences the coating hardness performance. For wear performance, the counter with external forces couldn’t penetrate wholly into the lattice of the developed coating due to the resilient formation of stable flakes. The microstructure formation shows stable dispersed crystal build-up and homogeneous growth. An excellent corrosion resistance characteristic was noticed with Ni-P-Zn-25 min matrix.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback