Browsing by Author "Aweda, J. O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Coolant Temperature on Machining Characteristics of High Carbon Steel(Covenant Journal of Engineering Technology (CJET), 2018-03) Ogedengbe, T. S.; Abdulkareem, S.; Aweda, J. O.This paper reports on the effect of coolant temperature on machining of high carbon steels. The development of a cooling system to reduce the temperature of water soluble coolant to 7.9oC from ambient temperature was employed in this work to improve the machining performance. The experiments were performed using cooled and ambient temperatures by employing Taguchi L18 orthogonal array to design the experimental runs. The cutting speed, feed rate and depth of cut were the machining parameters used; while the tool-work piece interface temperature was monitored using a digital thermometer with k-type thermocouple wire. The selected control factors are material removal rate and surface roughness. The experimental results were analyzed using Minitab 16. The main effects and percentage contributions of various parameters affecting surface roughness and material removal rate were discussed, and the optimal cutting conditions were determined. It was observed that surface finish improved by 65% with the use of the developed cooled system. The reduction in coolant temperature played a vital role in improving surface finish during machining high carbon steels.Item Investigation on Effect of Material Compositions on Machinability of Carbon Steels(International Conference on Engineering for Sustainable World, 2019) Abdulkareem, S.; Ogedengbe, T. S.; Aweda, J. O.; Ajiboye, T. K.; Khan, A. A.; Babatunde, M. A.Steels are basically classified based on their carbon contents. In view of this, the processing of steels is greatly affected by their composition, particularly their carbon content. This paper reports on the machinability of three different steels with varying carbon contents. The steel samples were sourced from Owode metal market in Ilorin, Kwara State and their percentage compositional analysis was carried out at Universal Steels Limited, Lagos. The steel samples were classified into high, medium and low carbon steels based on their percentage carbon content. The machining condition was wet and the machining parameters used were depth of cut (0.2 – 0.6 mm), feed rate (0.05 – 0.15 mm/rev), and cutting speed (100 - 150 rpm). The experimental runs were designed using Taguchi orthogonal array of Minitab version 16 and the cutting temperature was monitored with a digital thermometer and k-type thermocouple wires. The experimental results were analysed using Minitab 18 with a focus on percentage contribution of various factors affecting surface roughness, chip morphology, cutting temperature and material removal rate. Results show that surface finish is highest in low carbon steel and lowest in high carbon steel. The responses show that machinability of the steel improved with a reduction in carbon content.