Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Babalola, Olusola"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Context-Adaptive Ranking Model for Effective Information Retrieval System
    (International Journal of Information Science, 2018) Agbele, Kehinde K.; Ayetiran, Eniafe; Babalola, Olusola
    Abstract When using Information Retrieval (IR) systems, users often present search queries made of ad-hoc keywords. It is then up to information retrieval systems (IRS) to obtain a precise representation of user’s information need, and the context of the information. Context-aware ranking techniques have been constantly used over the past years to improve user interaction in their search activities for improved relevance of retrieved documents. Though, there have been major advances in context-adaptive systems, there is still a lack of technique that models and implements context-adaptive application. The paper addresses this problem using DROPT technique. The DROPT technique ranks individual user information needs according to relevance weights. Our proposed predictive document ranking model is computed as measures of individual user search in their domain of knowledge. The context of a query determines retrieved information relevance. Thus, relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. We demonstrate the ranking task using metric measures and ANOVA, and argue that it can help an IRS adapted to a user's interaction behaviour, using context to improve the IR effectiveness.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback