Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Balogun, Wasiu A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Intelligent Technique for Grading Tropical Fruit using Magnetic Resonance Imaging
    (International Journal of Scientific & Engineering Research, 2013) Balogun, Wasiu A.; Salami, Momoh-Jimoh E.; McCarthy, Michael J.; Mustafah, Yasir M.; Aibinu, Abiodun M.
    Recent application of modern marketing techniques coupled with intelligent agricultural systems of production has transformed small scale farming into large scale, in most part of the world. Characteristically, most of the tropical fruits, such as orange, appeared edible physically but internally such fruits might be defective based on their tissue and juice. Eventually, these fruits, via the market and undetected, usually get to the consumers who encounter the unfavourable status of the fruits. Our purpose, in this study, is to develop a non-destructive method to predict the status of orange fruits, based on internal quality. Graph of histogram showing the levels of different four colour intensities were acquired and analysed. The features extracted from Magnetic Resonance Imaging (MRI), using any of the two proposed methods, were applied as an input to train artificial neural network (ANN) in order to predict the orange fruit status. Different structures of multi-layer perceptron neural networks with feed-forward and back-propagation learning algorithms were developed using

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback