Browsing by Author "Danko, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association(Elsevier: Environmental Research, 2021-09) Wu, Jun; Danko, David; Osuolale, Olayinka O.; et, alIn urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The cooccurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.Item Global Genetic Cartography of Urban Metagenomes and Anti-Microbial Resistance(BioRxiv, 2019-08-05) Danko, David; Osuolale, Olayinka O.; et., alAlthough studies have shown that urban environments and mass-transit systems have geospa-tially distinct metagenomes, no study has ever systematically studied these dense, human/microbial ecosystems around the world. To address this gap in knowledge, we created a global metagenomic and antimicrobial resistance (AMR) atlas of urban mass transit systems from 58 cities, spanning 3,741 samples and 4,424 taxonomically-defined microorganisms collected for three years. The map provides annotated, geospatial data about microbial strains, functional genetics, antimicrobial resistance, and novel genetic elements, including 10,928 novel predicted viral species. Urban microbiomes often resemble human commensal microbiomes from the skin and airways but contain a consistent “core” of 61 species which are predominantly not human commensal species. These data also show that AMR density across cities varies by several orders of magnitude with many AMRs present on plasmids with cosmopolitan distributions. Conversely, samples may be accurately (91.4%) classified to their city-of-origin using a linear support vector machine over taxa. Together, these results constitute a high-resolution global metagenomic atlas, which enables the discovery of new genetic components of the built human environment, forensic application, and an essential first draft of the global AMR burden of the world’s cities.Item A global metagenomic map of urban microbiomes and antimicrobial resistance(Cell Journal by Elsevier, 2021-05-26) Osuolale, Olayinka O.; Danko, David; Bezdan, Daniela; et alWe present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a highresolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.