Browsing by Author "Fayomi, Ojo Sunday Issac"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Electrodeposition Mechanism and α-Si3N4/ZrBr2 Doped Composite Particle on the Physicochemical and Structural Properties of Processed NiPZn Coatings on Mild Steel for Advance Application(Key Engineering Materials (Volume 900), 2021-09) Fayomi, Ojo Sunday Issac; Ayodeji, Sode Adedamola; Anyanwu, Benedict Uche; Nkiko, Mojisola O.; Dauda, Khadijah TolulopeNi-P-Zn nanocomposite coatings were plated on mild steel surface from sulphamate rich bath containing (α-Si3N4 and α-ZrBr2) nanoparticle produced via electrodeposition process. The compositions of the particulate were varied from 0 to 10 wt% with time variation between 10 to 25 min after ascertaining other optimum parameters. The crystal evolution and morphological quantification were examined using scanning electron microscope supported with energy dispersive spectroscopy. The corrosion degradation in an acidic and alkaline environment was considered and compared to establish the suitability and extents of the corrosion vulnerability of deposited coatings. The surface flake crystal identified on the microstructural properties show the presence of compositional constituent and disperse particle of α-Si3N4 and α-ZrBr2. Finally, corrosion properties show a resilient crystal surface stability in the presence of chloride and sulphate ion with a remarkable surface film still retained at the bulk interface. This study has confirmed that α-Si3N4 and α-ZrBr2 composite coating can be used for structural development and corrosion improvement in the presence of active ions. Keywords: Nanomaterials, Structure, Corrosion, Prevention, CoatingsItem Effect of ZrB2 Functionalized Nanoparticles Growth on Microstructural and Corrosion Resistance on Mild Steel through Electrodeposition Route(Key Engineering Materials, 2021) Fayomi, Ojo Sunday Issac; Nkiko, Mojisola O.; Dauda, Khadijah Tolulope; Oluwasegun, Kunle MichaelIn other to have a better performance of Ni-P-Zn multifunctional applications, crystallite-like Ni-P-Zn-ZrB2 composite was actively fabricated by electrodeposition principle. The corrosion, structural evolution and surface active phenomena were investigated by various techniques. The influence of ZrB2 particulate on the morphology and corrosion properties was examined. The outcomes show an inclusive flower-like doped ZrB2 phase constituent and is uniformly distributed Ni-P-Zn-ZrB2 improved strengthening effect. The corrosion progression of the developed metal alloy was compared with other coating matrix from 10-25 minutes interval. The integration of ZrB2 on Ni-P-Zn phase especially for 25 min deposits significantly enhances corrosion resistance due to good grain refinement. Keywords: Ni-based composite, electrodeposition, time difference, coating, corrosion