Browsing by Author "Grindle, Nathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aerobic Degradation of Di- and Trichlorobenzenes by Two Bacteria isolated from Polluted Tropical Soils.(Pergamon, 2007-01-01) Adebusoye, Sunday A.; Picardal, Flynn W.; Ilori, Matthew O.; Amund, Olukayode O.; Fuqua, Clay; Grindle, NathanTwo polychlorinated biphenyl (PCBs)-degrading bacteria were isolated by traditional enrichment technique from electrical transformer fluid (Askarel)-contaminated soils in Lagos, Nigeria. They were classified and identified as Enterobacter sp. SA-2 and Pseudomonas sp. SA-6 on the basis of 16S rRNA gene analysis, in addition to standard cultural and biochemical techniques. The strains were able to grow extensively on dichloro- and trichlorobenzenes. Although they failed to grow on tetrachlorobenzenes, monochloro- and dichlorobenzoic acids, they were able to utilize all monochlorobiphenyls, and some dichlorobiphenyls as sole sources of carbon and energy. The effect of incubation with axenic cultures on the degradation of 0.9 mM 1,4-dichlorobenzene, 0.44 mM 1,2,3- and 0.43 mM 1,3,5-trichlorobenzene in mineral salts medium was studied. Approximately, 80–90% of these xenobiotics were degraded in 200 h, concomitant with cell increase of up to three orders of magnitude, while generation times ranged significantly (P < 0.05) from 17–32 h. Catechol 1,2-dioxygenase and catechol 2,3-dioxygenase activities were detected in crude cell-free extracts of cultures pre-grown with benzoate, with the latter enzyme exhibiting a slightly higher activity (0.15–0.17 lmol min1 mg of protein1) with catechol, suggesting that the meta-cleavage pathway is the most readily available catabolic route in the SA strains. The wider substrate specificity of these tropical isolates may help in assessing natural detoxification processes and in designing bioremediation and bioaugmentation methods.Item Growth on Dichlorobiphenyls with Chlorine Substitution on Each Ring by Bacteria Isolated from Contaminated African Soils.(Springer-Verlag, 2007) Adebusoye, Sunday A.; Picardal, Flynn W.; Ilori, Matthew O.; Amund, Olukayode O.; Fuqua, Clay; Grindle, NathanUntil recently, it was generally believed that the presence of more than one chlorine substituent prevented chlorinated biphenyls from serving as a sole source of carbon and energy for aerobic bacteria. In this study, we report the isolation of three aerobic strains, identified as Enterobacter sp. SA-2, Ralstonia sp. SA-4, and Pseudomonas sp. SA-6 from Nigeria polluted soils, that were able to grow on a wide range of dichlorobiphenyls (diCBs). In addition to growing on all monochlorobiphenyls (monoCBs), the strains were all able to utilize 2,2’-, 2,4’-, and 2,3-diCB as a sole source of carbon and energy. With the exception of strain SA-2, growth was also sustainable on 3,3’-, and 3,5-diCB. Washed benzoate-grown cells were typically able to degrade 68 to 100% of the diCB (100 ppm) within 188 h, concomitant with a cell number increase of up to three orders-of-magnitude and elimination of varying amounts of chloride. In many cases, stoichiometric production of a chlorobenzoate (CBA) as a product was observed. During growth on 2,2’, and 2,4’-diCB, organisms exclusively attacked an o-chlorinated ring resulting in the production of 2-CBA and 4-CBA, respectively. A gradual decline in the concentration of the latter was observed, which suggested that the product was being degraded further. In the case of 2,3-diCB, the unsubstituted ring was preferentially metabolized. Initial diCB degradation rates were greatest for 2,4’-diCB (11.2+0.91 to 30.3+7.8 nmol/min per 109 cells) and lowest for 2,2’-diCB (0.37+0.12 to 2.7+1.2 nmol/min per 109 cells).