Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iskhandar, Mohd"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CFD based parametric analysis of gas flow in a counter-flow wet scrubber system
    (Momentum, 2013) Danzomo, Bashir A.; Salami, Momoh-Jimoh E.; Khan, Raisuddin M.; Iskhandar, Mohd
    Environmental protection measures regarding industrial emissions and tightened regulations for air pollution led to the selection of a counter-flow wet scrubber system based on applicability and economic considerations. The flow dynamics of gas transporting particulate matter and gaseous contaminants is a key factor which should be considered in the scrubber design. In this study, gas flow field were simulated using ANSYS Fluent computational fluids dynamic (CFD) software based on the continuity, momentum and k-ε turbulence model so as to obtain optimum design of the system, improve efficiency, shorten experimental, period and avoid dead zone. The result shows that the residuals have done a very good job of converging at minimum number of iterations and error of 1E-6. The velocity flow contours and vectors at the inlet, across the scrubbing chamber and the outlet shows a distributed flow and the velocity profiles have fully conformed to the recommended profile for turbulent flows in pipes. The total pressure within the scrubber cross-section is constant while the minimum and maximum pressure drops was obtained to be 0.30 pa and 3.03 pa which has conformed to the recommended pressure drop for wet scrubbers. From the results obtained, it can be deduced that the numerical simulation using CFD is an effective method to study the flow characteristics of a counter-flow wet scrubber system.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback