Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jung, K.H."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of Frictional Behavior in Cold Forging
    (Tribology Letter, 2010-10-15) Jung, K.H.; Lee, H.C.; Ajiboye, J.S.; Im, Y.T.
    In the present investigation, tip test was utilized to characterize the effects of surface roughness of the specimen and forming tools, rate of deformation, and type of lubricants on friction in solid and solid contact under high contact pressure at room temperature. For the test, a cylindrical specimen made of aluminum alloy of 6061-O was used and grease, corn oil, VG100, and VG32 were applied as lubricants. Single punch and two counter punch sets with different surface roughness of Ra = 0.08 and 0.63 lm were manufactured in order to investigate a frictional behavior during the test. In addition, two different deformation speeds of 0.1 and 5.0 mm/s were used for the test to check their effect on friction as well. Load levels and tip distances obtained from the test were compared to find out any correlation between the two. The change of surface topology of the specimen was monitored by optical measurement technique to better understand a frictional behavior at the punch and counter punch interfaces. Present investigation clearly shows that tip test is easy to apply to experimentally characterize the frictional behavior in cold forging under various processing conditions considered.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback