Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kader, S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A new method of vascular point detection using artificial neural network
    (IEEE, 2012-12-17) Kader, S.; Aibinu, A. M.; Salami, Momoh-Jimoh E.
    Vascular intersection is an important feature in retina fundus image (RFI). It can be used to monitor the progress of diabetes hence accurately determining vascular point is of utmost important. In this work a new method of vascular point detection using artificial neural network model has been proposed. The method uses a 5×5 window in order to detect the combination of bifurcation and crossover points in a retina fundus image. Simulated images have been used to train the artificial neural network and on convergence the network is used to test (RFI) from DRIVE database. Performance analysis of the system shows that ANN based technique achieves 100% accuracy on simulated images and minimum of 92% accuracy on RFI obtained from DRIVE database.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback