Browsing by Author "Mohammed, I.T."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mathematical Analysis Of Effect Of Area On The Dynamical Spread Of Measles(IOSR Journal of Engineering, 2014-03) Adewale, S.O.; Mohammed, I.T.; Olopade, I.A.This paper presents a robust compartmental mathematical model of (SVEIR) which incorporated area only. Where this area is the size of the environment where the study is being investigated. It shows that model has a disease free equilibrium which is globally asymptotically stable (GAS). There exists a unique endemic equilibrium point which is locally stable whenever the association threshold quantity (R0) exceeds unity i.e. R0 > 1. We solved the model numerically using Runge-kutta of order four (4). It is shown that as the area is increasing the total number of infected individual is decreasing. This implies that to reduce the spread of measles, measles patients are to be kept separately for treatment so as to reduce the effective contract rate. The results were presented graphicallyItem MATHEMATICAL ANALYSIS OF SENSITIVE PARAMETERS ON THE DYNAMICAL TRANSMISSION OF EBOLA HEMORRHAGIC FEVER(International Journal of Research - GRANTHAALAYAH, 2016-10) Adewale, S .O; Adeniran, G.A.; Olopade, I .A.; Mohammed, I.T.A four (4) compartmental model of (S, E, I , I ) were presented to have better understanding of parameters that influence the dynamical spread of Ebola in a population. The model is analyzed for all the parameters responsible for the dynamical spread of the disease in order to find the most sensitive parameters that need to be given attention. The stability of the model was analyzed for the existence of disease free and endemic equilibrium points. Basic Reproduction Number ( ) was obtained using next generation matrix method (NGM), and it is shown that the disease free equilibrium point is locally asymptotically stable whenever the basic reproduction number is less than unity i.e ( ) and unstable whenever the basic reproduction number is greater than unity ( ).The relative sensitivity indices of the model with respect to each parameter in the basic reproduction number is calculated in order to find the most sensitive parameter which the medical practitioners and policy health makers should work on in order to reduce the spread of Ebola in the population. The result shows that effective contact rate and fraction of individuals with low immunity are the most sensitive parameters in the reproduction number. Therefore, effort should be put in place so that the basic reproduction number should not be greater unity so as to prevent the endemic situation.