Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Osualale, Olayinka"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Near infrared femtosecond laserinduced bacterial inactivation
    (Proceedings SPIE 10876, Optical Interactions with Tissue and Cells XXX, 108760K (1 March 2019), 2019-03) Maphanga, Charles; Manoto, Sello; Ombinda-Lemboumba, Saturnin; Osualale, Olayinka; Mthunzi-Kufa, Patience
    The use of light to inactivate microbes as an alternative method to the traditional methods of controlling microorganisms continues to draw the attention of researchers. Traditional methods of sterilization and/or pasteurization using chemicals or thermal treatments have certain limitations such as the creation of resistant bacterial strains. The application of pulsed laser irradiation compromises the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. This study aimed at using a range of power densities to investigate inactivation of Escherichia coli and Salmonella enteritidis. A Titanium sapphire pulsed laser at 800 nm wavelength, repetition rate of 76 MHz, pulse duration of 120 fs, output power of 560 mW was used in this study. A fluence range was applied on bacterial cultures in a 16 mm diameter petri with a beam spot area of 2.5 cm2 (after expansion). The laser killing effectiveness was evaluated by comparing colony forming units (CFUs) with and without irradiation on 10-7 dilutions of bacterial cultures. Cytotoxicity was analysed using the lactose dehydrogenase (LDH) assay. The laser killing rate varied with bacteria species or strains and the level of fluence.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback