Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Oyeyemi, Bolaji Fatai"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Development of multiepitope subunit protein vaccines against Toxoplasma gondii using an immunoinformatics approach
    (NAR Genomics and Bioinformatics,, 2020-06-21) Onile, O.S.; Ojo, Glory J.; Oyeyemi, Bolaji Fatai; Agbowuro, Gbenga O.; Fadahunsi, Adeyinka I.
    Approximately one-third of the world’s human population is estimated to have been exposed to the parasite Toxoplasma gondii. Its prevalence is reportedly high in Ethiopia (74.80%) and Zimbabwe (68.58%), and is 40.40% in Nigeria. The adverse effect of this parasite includes a serious congenital disease in the developing fetus of pregnant women. After several efforts to eliminate the disease, only one licensed vaccine ‘Toxovax’ has been used to avoid congenital infections in sheep. The vaccine has been adjudged expensive coupled with adverse effects and short shelf life. The potential of vaccine to likely revert to virulent strain is a major reason why it has not been found suitable for human use, hence the need for a vaccine that will induce T and B memory cells capable of eliciting longtime immunity against the infection. This study presents immunoinformatics approaches to design a T. gondii-oriented multiepitope subunit vaccine with focus on micronemal proteins for the vaccine construct. The designed vaccine was subjected to antigenicity, immunogenicity, allergenicity and physicochemical parameter analyses. A 657-amino acid multiepitope vaccine was designed with the antigenicity probability of 0.803. The vaccine construct was classified as stable, nonallergenic, and highly immunogenic, thereby indicating the safety of the vaccine construct for human use.

DSpace software copyright © 2002-2025 Abba & King Systems LLC

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback