Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil

Loading...
Thumbnail Image
Date
2018-08
Journal Title
Journal ISSN
Volume Title
Publisher
Bulletin of the National Research Centre
Abstract
Background: The purpose of this study is to decipher the diverse carbohydrate metabolism pathways in a spent engine oil-perturbed agricultural soil, enunciate the carbohydrate-active enzymes and genes involved in the process, taxonomically classify the annotated enzymes and genes, and highlight the importance of the study for ecological and biotechnological processes. Results: Functional analysis of the metagenome of spent engine oil (SEO)-contaminated agricultural soil (AB1) using the Kyoto Encyclopedia of Genes and Genomes (KEGG) GhostKOALA, Cluster of Orthologous Groups (COG) of proteins, the Carbohydrate-Active Enzymes (CAZy) database, and the NCBI’s conserved domain database (CDD) revealed extensive metabolism of carbohydrates via diverse carbohydrate-active enzymes and genes. Enzymes and genes annotated for glycolysis/gluconeogenesis pathway, citric acid (TCA) cycle, pentose phosphate pathway, and pyruvate metabolism, among others, were detected, and these were not detected in the original agricultural soil (1S). Analysis of carbohydrate-active enzymes, using the CAZy database, showed 45 CAZy families with preponderance of glycoside hydrolases (GHs, 46.7%), glycosyltransferases (GTs, 24.4%), and carbohydrate-binding modules (CBMs, 15.5%). Taxonomic classification of the annotated enzymes and genes for carbohydrate metabolism using the GhostKOALA and CAZy databases revealed the predominance of the phylum Proteobacteria with the representative genera Pseudomonas (18%), Sphingobium (13.5%), and Sphingomonas (4.5%), respectively. Biotechnologically important enzymes such as xylanases, endoglucanases, α- and β-glucosidases and glycogen debranching enzymes were also retrieved from the metagenome. Conclusions: This study revealed the presence of diverse carbohydrate-active enzymes and genes mediating various carbohydrate metabolism pathways in the SEO-perturbed soil metagenome. It also reveals the detection of biotechnologically important enzymes with potentials for industrial use.
Description
Staff Publication
Keywords
Spent engine oil,, Agricultural soil,, Soil microcosm,, Illumina sequencing,, Carbohydrate metabolism,, Carbohydrate-active enzymes,, Microbial enzymes and genes
Citation
Salam, L. B. (2018). Detection of carbohydrate-active enzymes and genes in a spent engine oil-perturbed agricultural soil. Bulletin of the National Research Centre, 42(1). doi:10.1186/s42269-018-0013-6