MRI reconstruction using discrete Fourier transform: a tutorial
dc.contributor.author | Aibinu, Abiodun M. | |
dc.contributor.author | Salami, Momoh-Jimoh E. | |
dc.contributor.author | Shafie, Amir A. | |
dc.contributor.author | Najeeb, Athaur R. | |
dc.date.accessioned | 2019-08-14T10:49:45Z | |
dc.date.available | 2019-08-14T10:49:45Z | |
dc.date.issued | 2008-06-28 | |
dc.description.abstract | The use of Inverse Discrete Fourier Transform (IDFT) implemented in the form of Inverse Fourier Transform (IFFT) is one of the standard method of reconstructing Magnetic Resonance Imaging (MRI) from uniformly sampled K-space data. In this tutorial, three of the major problems associated with the use of IFFT in MRI reconstruction are highlighted. The tutorial also gives brief introduction to MRI physics; MRI system from instrumentation point of view; K-space signal and the process of IDFT and IFFT for One and two dimensional (1D and 2D) data. | en_US |
dc.identifier.citation | Aibinu, A. M., Salami, M. J., Shafie, A. A., & Najeeb, A. R. (2008). MRI reconstruction using discrete Fourier transform: a tutorial. World Academy of Science, Engineering and Technology, 42, 179. | en_US |
dc.identifier.uri | http://repository.elizadeuniversity.edu.ng/handle/20.500.12398/456 | |
dc.language.iso | en | en_US |
dc.publisher | World Academy of Science, Engineering and Technology | en_US |
dc.subject | Discrete Fourier Transform (DFT) | en_US |
dc.subject | K-space Data | en_US |
dc.subject | Magnetic Resonance (MR) | en_US |
dc.subject | Spin | en_US |
dc.subject | Windows | en_US |
dc.title | MRI reconstruction using discrete Fourier transform: a tutorial | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- MRI reconstruction using discrete Fourier transform_ a tutorial.pdf
- Size:
- 730.93 KB
- Format:
- Adobe Portable Document Format
- Description:
- Article full-text
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.61 KB
- Format:
- Item-specific license agreed upon to submission
- Description: